Home
Class 12
MATHS
If a, b, c are in A.P., then |{:(x+2,x+3...

If a, b, c are in A.P., then `|{:(x+2,x+3,x+a),(x+4, x+5, x+b),(x+6, x+7,x+c):}|` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant \[ D = \begin{vmatrix} x + 2 & x + 3 & x + a \\ x + 4 & x + 5 & x + b \\ x + 6 & x + 7 & x + c \end{vmatrix} \] given that \(a\), \(b\), and \(c\) are in Arithmetic Progression (A.P.). ### Step 1: Use the property of A.P. Since \(a\), \(b\), and \(c\) are in A.P., we have the relationship: \[ b - a = c - b \] This can be rearranged to: \[ 2b = a + c \quad \text{(1)} \] ### Step 2: Perform row operations We will perform row operations to simplify the determinant. Specifically, we will subtract the second row from the first row and the third row from the second row. 1. **Row Operation 1**: \(R_1 \leftarrow R_1 - R_2\) \[ R_1 = \begin{pmatrix} (x + 2) - (x + 4) & (x + 3) - (x + 5) & (x + a) - (x + b) \end{pmatrix} = \begin{pmatrix} -2 & -2 & a - b \end{pmatrix} \] 2. **Row Operation 2**: \(R_2 \leftarrow R_2 - R_3\) \[ R_2 = \begin{pmatrix} (x + 4) - (x + 6) & (x + 5) - (x + 7) & (x + b) - (x + c) \end{pmatrix} = \begin{pmatrix} -2 & -2 & b - c \end{pmatrix} \] Now the determinant becomes: \[ D = \begin{vmatrix} -2 & -2 & a - b \\ -2 & -2 & b - c \\ x + 6 & x + 7 & x + c \end{vmatrix} \] ### Step 3: Analyze the rows Notice that the first two rows are now: - Row 1: \((-2, -2, a - b)\) - Row 2: \((-2, -2, b - c)\) Since \(b - a = c - b\) implies that \(a - b = b - c\), we can conclude that: \[ a - b = b - c \quad \text{(from the A.P. condition)} \] Thus, the first two rows are identical: \[ R_1 = R_2 \] ### Step 4: Conclusion According to the properties of determinants, if two rows are identical, the value of the determinant is zero. Thus, we conclude: \[ D = 0 \] ### Final Answer: The value of the determinant is \(0\). ---
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - I|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

Choose the correct answer in questions 17 to 19: If a, b, c are in A.P., then the determinant [{:(x+2,x+3,x+2a),(x+3,x+4,x+3b),(x+4,x+5,x+2c):}] is : (a) 0 (b) 1 ( c) x (d) 2x

Choose the correct answer from the following : If a, b, c are in arithmetic progression, then |{:(x+1,x+4,x+a),(x+2,x+5,x+b),(x+3,x+6,x+c):}|=

If a,b,c are in AP show that |[x+1,x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c]|=0

If a, b, c, are in A.P, then the determinant |x+2x+3x+2a x+3x+4x+2b x+4x+5x+2c| is (A) 0 (B) 1 (C) x (D) 2x

if a,b,c are in A.P. show that : | [ x+1, x+2,x+a],[x+2,x+3,x+b],[x+3,x+4,x+c ] |=0

If a,b,c, are in A.P, then the determinant,det[[x+2,x+3,x+2ax+3,x+4,x+2bx+4,x+5,x+2c]] is

If log_(a)x,log_(b)x,log_(c)x are in A.P then c^(2)=

If a, b, c are in A.P. and a, x, b, y, c are in G.P., then prove that b^(2) is the arithmatic mean of x^(2)" and "y^(2).

If a,b,c are in A.P., and x+2,x+7,ax+5,x+11,bx+8,x+15,c]| then Delta equals to