Home
Class 12
MATHS
If |{:(1+ax,1+bx,1+cx),(1+a1x,1+b1x,1+c1...

If `|{:(1+ax,1+bx,1+cx),(1+a_1x,1+b_1x,1+c_1x),(1+a_2x,1+b_2x,1+c_2x):}|=A_0+A_1x+A_2x^2+A ""_3x^3`, then `A_0` is

A

-1

B

0

C

1

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find \( A_0 \) from the determinant given by \[ D = \begin{vmatrix} 1 + ax & 1 + bx & 1 + cx \\ 1 + a_1x & 1 + b_1x & 1 + c_1x \\ 1 + a_2x & 1 + b_2x & 1 + c_2x \end{vmatrix} \] we will follow these steps: ### Step 1: Rewrite the Determinant We can rewrite the determinant by manipulating the columns. Let's denote the columns as \( C_1, C_2, C_3 \). We can express \( C_2 \) and \( C_3 \) in terms of \( C_1 \): \[ C_2 = C_2 - C_1 \quad \text{and} \quad C_3 = C_3 - C_1 \] This gives us: \[ D = \begin{vmatrix} 1 + ax & (1 + bx) - (1 + ax) & (1 + cx) - (1 + ax) \\ 1 + a_1x & (1 + b_1x) - (1 + a_1x) & (1 + c_1x) - (1 + a_1x) \\ 1 + a_2x & (1 + b_2x) - (1 + a_2x) & (1 + c_2x) - (1 + a_2x) \end{vmatrix} \] This simplifies to: \[ D = \begin{vmatrix} 1 + ax & (b - a)x & (c - a)x \\ 1 + a_1x & (b_1 - a_1)x & (c_1 - a_1)x \\ 1 + a_2x & (b_2 - a_2)x & (c_2 - a_2)x \end{vmatrix} \] ### Step 2: Factor Out \( x \) Now we can factor \( x \) from the second and third columns: \[ D = x^2 \begin{vmatrix} 1 + ax & b - a & c - a \\ 1 + a_1x & b_1 - a_1 & c_1 - a_1 \\ 1 + a_2x & b_2 - a_2 & c_2 - a_2 \end{vmatrix} \] ### Step 3: Evaluate the Determinant Now, we need to evaluate the determinant. The determinant can be expanded, and we can find the constant term \( A_0 \) when \( x = 0 \): \[ D = x^2 \begin{vmatrix} 1 & b - a & c - a \\ 1 & b_1 - a_1 & c_1 - a_1 \\ 1 & b_2 - a_2 & c_2 - a_2 \end{vmatrix} \] ### Step 4: Calculate \( A_0 \) When \( x = 0 \), the determinant simplifies to: \[ D = 0^2 \cdot \text{(some constant)} = 0 \] Thus, \( A_0 \) is the value of the determinant when \( x = 0 \): \[ A_0 = \begin{vmatrix} 1 & b - a & c - a \\ 1 & b_1 - a_1 & c_1 - a_1 \\ 1 & b_2 - a_2 & c_2 - a_2 \end{vmatrix} \] ### Final Result After evaluating the determinant, we find that: \[ A_0 = (b - a)(b_1 - a_1)(c_2 - a_2) + (c - a)(b_1 - a_1)(b_2 - a_2) + (b - a)(c_1 - a_1)(b_2 - a_2) - (c - a)(b_1 - a_1)(b_2 - a_2) - (b - a)(c_1 - a_1)(b_2 - a_2) - (b - a)(b_1 - a_1)(c_2 - a_2) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - I|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If |(1 +ax,1 +bx,1 + bx),(1 +a_(1) x,1 +b_(1) x,1 + c_(1) x),(1 + a_(2) x,1 + b_(2) x,1 + c_(2) x)| = A_(0) + A_(1) x + A_(2) x^(2) + A_(3) x^(3) , then A_(1) is equal to

Suppose a_(1)+a_(2)+a_(3)+1.3,b_(1)+b_(2)+b_(3)=2.1,c_(1)+c_(2)+c_(3)=1.6 and Delta(x)=|(1+a_(1)x,1+b_(1)x,1+c_(1)x),(1+a_(2)x,1+b_(2)x,1+c_(3)x),(1+a_(3)x,1+b_(3)x,1+c4x)| =A_(0)+A_(1)x+A_(2)x^(2)+A_(2)x^(3) , then A_(1)= _________

det[[1+ax,1+bx,1+cx1+a_(1)x,1+b_(1)x,1+c_(1)x1+a_(2)x,1+b_(2)x,1+c_(2)x the find the value of A_(1)]]=A_(0)+A_(1)x+A_(2)x^(2)+A_(3)x^(3)

If |((1+x),(1+x)^2,(1+x)^3),((1+x)^4,(1+x)^5,(1+x)^6),((1+x)^7,(1+x)^8,(1+x)^9)|=a_0+a_1x+a_2x^2+......, ,then, a, is equal to

If cosx=a_0+a_1 x+a_2x^2+... then the value of a_2 is

If a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0, a_3x+b_3y+c_3z=0 and |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 , then the given system then

Three linear equations a_1x+b_1y+c_1z=0, a_2x+b_2y+c_2z=0,a_3x+b_3y+c_3z=0 are consistent if (A) |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=0 (B) |(a_1,b_1,c_1),(a_2,b_2,c_2),(a_3,b_3,c_3)|=-1 (C) a_1b_1c_1+a_2b_2c_2+a_3b_3c_3=0 (D) none of these