Home
Class 12
MATHS
If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^...

If `|{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0` then relation of `x,y` and `z` is

A

`ane1`

B

`a=1`

C

`a=0`

D

`a=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the determinant equation \( |(x, x^2, 1+x^3), (y, y^2, 1+y^3), (z, z^2, 1+z^3)| = 0 \), we can follow these steps: ### Step 1: Write the Determinant We start with the determinant: \[ D = \begin{vmatrix} x & x^2 & 1 + x^3 \\ y & y^2 & 1 + y^3 \\ z & z^2 & 1 + z^3 \end{vmatrix} \] ### Step 2: Expand the Determinant Using the property of determinants, we can expand it: \[ D = x \begin{vmatrix} y^2 & 1 + y^3 \\ z^2 & 1 + z^3 \end{vmatrix} - x^2 \begin{vmatrix} y & 1 + y^3 \\ z & 1 + z^3 \end{vmatrix} + (1 + x^3) \begin{vmatrix} y & y^2 \\ z & z^2 \end{vmatrix} \] ### Step 3: Calculate the 2x2 Determinants Now we calculate the 2x2 determinants: 1. \( \begin{vmatrix} y^2 & 1 + y^3 \\ z^2 & 1 + z^3 \end{vmatrix} = y^2(1 + z^3) - z^2(1 + y^3) = y^2 + y^2z^3 - z^2 - z^2y^3 \) 2. \( \begin{vmatrix} y & 1 + y^3 \\ z & 1 + z^3 \end{vmatrix} = y(1 + z^3) - z(1 + y^3) = y + yz^3 - z - zy^3 \) 3. \( \begin{vmatrix} y & y^2 \\ z & z^2 \end{vmatrix} = y z^2 - z y^2 = y(z^2 - y z) \) ### Step 4: Substitute Back into the Determinant Substituting these back into \( D \): \[ D = x(y^2 + y^2z^3 - z^2 - z^2y^3) - x^2(y + yz^3 - z - zy^3) + (1 + x^3)(y(z^2 - yz)) \] ### Step 5: Set the Determinant to Zero Setting \( D = 0 \) gives us the condition for \( x, y, z \) to be linearly dependent. ### Step 6: Analyze the Result The determinant being zero implies that the rows (or columns) of the matrix are linearly dependent. This means that the points represented by \( (x, x^2, 1+x^3) \), \( (y, y^2, 1+y^3) \), and \( (z, z^2, 1+z^3) \) are collinear. ### Conclusion Thus, the relation among \( x, y, z \) is that they must satisfy a certain polynomial relationship that makes these points collinear.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    AAKASH INSTITUTE|Exercise SECTION - I|5 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos
  • DIFFERENTIAL EQUATIONS

    AAKASH INSTITUTE|Exercise Assignment Section - J (Aakash Challengers Questions)|4 Videos

Similar Questions

Explore conceptually related problems

If xneynez" and " |{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0, then xyz =

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2

If |[x^3+1, x^2, x] , [y^3+1, y^2, y] , [z^3+1, z^2, z]|=0 and x, y, z are all different then prove that xyz=-1

If |(x^(n),x^(n+2),x^(n+3)),(y^(n),y^(n+2),y^(n+3)),(z^(n),z^(n+2),z^(n+3))| = (x -y) (y -z) (z -x) ((1)/(x) + (1)/(y) + (1)/(z)) , then n equals

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

Prove that [[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (1+pxyz)(x-y)(y-z)(z-x)