Home
Class 12
MATHS
Prove that the circle x^(2) + y^(2) + 2a...

Prove that the circle `x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0` touch each other if
`(1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2))` .

Text Solution

AI Generated Solution

To prove that the circles \(x^2 + y^2 + 2ax + c^2 = 0\) and \(x^2 + y^2 + 2by + c^2 = 0\) touch each other if \(\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{c^2}\), we will follow these steps: ### Step 1: Identify the centers and radii of the circles The first circle is given by the equation: \[ x^2 + y^2 + 2ax + c^2 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise Try ypurself|42 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A)|55 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos

Similar Questions

Explore conceptually related problems

If two circles x^(2) + y^(2) - 2ax + c = =0 and x^(2) + y^(2) - 2by + c = 0 touch each other , then c =

Prove that the circles x^(2)+y^(2)+2ax+c^(2)=0andx^(2)+y^(2)+2by+c^(2)=0 touch each other, if (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2)) .

If two circles x^(2)+y^(2)+c^(2)=2ax and x^(2)+y^(2)+c^(2)-2by=0 touch each other externally , then prove that (1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))

If circles x^(2) + y^(2) = 9 " and " x^(2) + y^(2) + 2ax + 2y + 1 = 0 touch each other , then a =

Prove that the circles x^(2)+y^(2)+2ax+2ax+2by=0 and x^(2)+y^(2)+2a_(1)x+2b_(1)y=0 touch each other if, ab_(1),a_(1)b .