Home
Class 12
MATHS
If 3x^(2) - 5y^(2) - 6x + 20 y - 32 = 0 ...

If `3x^(2) - 5y^(2) - 6x + 20 y - 32 = 0` represents a hyperbola, then the co-ordinates of foci are

A

`(pm 2sqrt(2), 0)`

B

`(1 pm 2sqrt(2), 2)`

C

`(0, pm 2sqrt(2))`

D

`(1, 2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION-C ( Objective Type Questions ( More than one answer))|1 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION-C|45 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A)|55 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos

Similar Questions

Explore conceptually related problems

If (x^(2))/(36) - (y^(2))/(64) =1 represents a hyperbola, then find the co-ordinates of the foci and the vertices, the eccentricity and the length of the latus rectum.

The equation 16x^(2) - 3y^(2) - 32x - 12y - 44 = 0 represents a hyperbola, which one of the following is /are correct

Show that 3x^(2) - 3y^(2) - 18x + 12y + 2 = 0 represents a rectangular hyperbola. Find its centre foci and eccentricity.

Show that the equation x^(2)-2y^(2)-2x+8y-1=0 represents a hyperbola.Find the coordinates of the centre, lengths of the axes,eccentricity,latusrectum, coordinates of foci and vertices,equations of the directrices of the hyperbola.

Show that 4x^(2) + 8x + y^(2) - 4y + 4 = 0 represents an ellipse. Find its eccentricity, co-ordinates of foci equations of major and minor axes and latus - rectum.

Show that the equation 9x^2 - 16y^2 - 18x - 64y - 199 = 0 represents a hyperbola. For this hyperbola, find the length of axes, eccentricity, centre, foci, vertices, latus rectum and directrices.

Equation x^(2)y^(2)-9y^(2)+6x^(2)y-54y=0 represents

If (x^(2))/(a+7)+(y^(2))/(5-a)=1 represent a hyperbola then

AAKASH INSTITUTE-CONIC SECTIONS-SECTION-B
  1. P is any variable point on the ellipse 4x^(2) + 9y^(2) = 36 and F(1), ...

    Text Solution

    |

  2. The curve described parametrically by x = t^2 + t +1, y = t^2 - t + 1 ...

    Text Solution

    |

  3. Find the equation of the common tangent to the curves y^2=8x and xy=-1...

    Text Solution

    |

  4. AB is double ordinate of the hyperbola x^2/a^2-y^2/b^2=1 such that Del...

    Text Solution

    |

  5. The equation of the hyperbola, whose foci are (6, 4) and (-4, 4) and e...

    Text Solution

    |

  6. The equation of the tangent to the hyperbola 3x^(2) - 4y^(2) = 12, whi...

    Text Solution

    |

  7. The equation (x^2)/(1-r)-(y^2)/(1+r)=1,r >1, represents an ellipse (b)...

    Text Solution

    |

  8. The equation of the hyperbola with centre at (0, 0) and co-ordinate ...

    Text Solution

    |

  9. The equation of the tangent to the hyperbola 3x^(2) - 8y^(2) = 24 and ...

    Text Solution

    |

  10. The locus a point P(alpha,beta) moving under the condition that the li...

    Text Solution

    |

  11. The locus of the middle points of the chords of hyperbola (x^(2))/(9) ...

    Text Solution

    |

  12. Let P(a sectheta, btantheta) and Q(aseccphi , btanphi) (where theta+...

    Text Solution

    |

  13. An ellipse has eccentricity 1/2 and one focus at the point P(1/2,1)....

    Text Solution

    |

  14. IF t is a parameter, then x = a(t + (1)/(t)) and y = b(t - (1)/(t)) re...

    Text Solution

    |

  15. If 3x^(2) - 5y^(2) - 6x + 20 y - 32 = 0 represents a hyperbola, then ...

    Text Solution

    |

  16. IF the locus of the point of intersection of two perpendicular tangent...

    Text Solution

    |

  17. If the line y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2) touches the...

    Text Solution

    |

  18. A common tangent to 9x^(2) - 16y^(2) = 144 and x^(2) + y^(2) = 9 is

    Text Solution

    |

  19. Area of the triangle formed by any arbitrary tangents of the hyperbola...

    Text Solution

    |

  20. If the normal to the rectangular hyperbola xy = 4 at the point (2t, ...

    Text Solution

    |