Home
Class 12
MATHS
If the line y = mx + sqrt(a^(2) m^(2) -b...

If the line `y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2)` touches the hyperbola `(x^(2))/(16)-(y^(2))/(3) =1` at the point `(4 sec theta, sqrt(3) tan theta)` then `theta` is

A

`(pi)/(2)`

B

`(pi)/(4)`

C

`(2pi)/(3)`

D

`(pi)/(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we need to find the value of \( \theta \) given the conditions of the tangent line to the hyperbola. ### Step 1: Identify the given information We are given: - The equation of the line: \[ y = mx + \sqrt{a^2 m^2 - b^2} \] where \( m = \frac{1}{2} \). - The hyperbola: \[ \frac{x^2}{16} - \frac{y^2}{3} = 1 \] - The point of tangency: \[ (4 \sec \theta, \sqrt{3} \tan \theta) \] ### Step 2: Write the equation of the tangent to the hyperbola The equation of the tangent to the hyperbola at the point \( (x_1, y_1) \) is given by: \[ \frac{x}{16} \cdot x_1 - \frac{y}{3} \cdot y_1 = 1 \] Substituting \( x_1 = 4 \sec \theta \) and \( y_1 = \sqrt{3} \tan \theta \): \[ \frac{x}{16} \cdot (4 \sec \theta) - \frac{y}{3} \cdot (\sqrt{3} \tan \theta) = 1 \] This simplifies to: \[ \frac{x \sec \theta}{4} - \frac{y \tan \theta}{\sqrt{3}} = 1 \] ### Step 3: Rearranging the tangent equation Rearranging gives: \[ \sec \theta \cdot x - \frac{4y \tan \theta}{\sqrt{3}} = 4 \] ### Step 4: Write the line equation with \( m = \frac{1}{2} \) Substituting \( m = \frac{1}{2} \) into the line equation: \[ y = \frac{1}{2}x + \sqrt{16 \cdot \left(\frac{1}{2}\right)^2 - 3} \] Calculating the square root term: \[ = \sqrt{16 \cdot \frac{1}{4} - 3} = \sqrt{4 - 3} = \sqrt{1} = 1 \] Thus, the line equation becomes: \[ y = \frac{1}{2}x + 1 \] ### Step 5: Rearranging the line equation Rearranging gives: \[ \frac{1}{2}x - y + 1 = 0 \] ### Step 6: Compare coefficients for tangency Now we compare the coefficients of the two tangent equations: 1. From the hyperbola: \[ \sec \theta = \frac{1}{2}, \quad -\frac{4 \tan \theta}{\sqrt{3}} = -1 \] ### Step 7: Solve for \( \theta \) From \( \sec \theta = \frac{1}{2} \): \[ \cos \theta = 2 \quad \text{(not possible)} \] From \( -\frac{4 \tan \theta}{\sqrt{3}} = -1 \): \[ \frac{4 \tan \theta}{\sqrt{3}} = 1 \implies \tan \theta = \frac{\sqrt{3}}{4} \] ### Step 8: Find \( \theta \) Using \( \tan \theta = \frac{\sqrt{3}}{4} \): \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{4}\right) \] ### Final Answer Thus, the value of \( \theta \) is: \[ \theta = \tan^{-1}\left(\frac{\sqrt{3}}{4}\right) \]
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION-C ( Objective Type Questions ( More than one answer))|1 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise SECTION-C|45 Videos
  • CONIC SECTIONS

    AAKASH INSTITUTE|Exercise Assignment (SECTION - A)|55 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    AAKASH INSTITUTE|Exercise section-J (Aakash Challengers Qestions)|16 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    AAKASH INSTITUTE|Exercise section - J|6 Videos

Similar Questions

Explore conceptually related problems

If the line y = mx + sqrt(a^(2)m^(2) - b^(2)) touches the hyperbola x^(2)/a^(2) - y^(2)/b^(2) = 1 at the point (a sec theta, b tan theta) , then find theta .

If ("sec" theta 1)- (sqrt(2)-1) "tan" theta, "then" theta =

If the line y=mx + sqrt(a^2 m^2 - b^2) touches the hyperbola x^2/a^2 - y^2/b^2 = 1 at the point (a sec phi, b tan phi) , show that phi = sin^(-1) (b/am) .

Solve sec theta+1=(2+sqrt(3))tan theta0

Solve sec theta-1=(sqrt(2)-1) tan theta .

Solve tan theta+tan 2 theta+sqrt(3) tan theta tan 2 theta = sqrt(3) .

If "sec" theta "tan" theta =sqrt(2),"then" theta=

If "sec"^(2) theta = sqrt(2) (1-"tan"^(2) theta), "then" theta=

If tan theta+tan2 theta+sqrt(3)tan theta tan2 theta=sqrt(3) then

AAKASH INSTITUTE-CONIC SECTIONS-SECTION-B
  1. P is any variable point on the ellipse 4x^(2) + 9y^(2) = 36 and F(1), ...

    Text Solution

    |

  2. The curve described parametrically by x = t^2 + t +1, y = t^2 - t + 1 ...

    Text Solution

    |

  3. Find the equation of the common tangent to the curves y^2=8x and xy=-1...

    Text Solution

    |

  4. AB is double ordinate of the hyperbola x^2/a^2-y^2/b^2=1 such that Del...

    Text Solution

    |

  5. The equation of the hyperbola, whose foci are (6, 4) and (-4, 4) and e...

    Text Solution

    |

  6. The equation of the tangent to the hyperbola 3x^(2) - 4y^(2) = 12, whi...

    Text Solution

    |

  7. The equation (x^2)/(1-r)-(y^2)/(1+r)=1,r >1, represents an ellipse (b)...

    Text Solution

    |

  8. The equation of the hyperbola with centre at (0, 0) and co-ordinate ...

    Text Solution

    |

  9. The equation of the tangent to the hyperbola 3x^(2) - 8y^(2) = 24 and ...

    Text Solution

    |

  10. The locus a point P(alpha,beta) moving under the condition that the li...

    Text Solution

    |

  11. The locus of the middle points of the chords of hyperbola (x^(2))/(9) ...

    Text Solution

    |

  12. Let P(a sectheta, btantheta) and Q(aseccphi , btanphi) (where theta+...

    Text Solution

    |

  13. An ellipse has eccentricity 1/2 and one focus at the point P(1/2,1)....

    Text Solution

    |

  14. IF t is a parameter, then x = a(t + (1)/(t)) and y = b(t - (1)/(t)) re...

    Text Solution

    |

  15. If 3x^(2) - 5y^(2) - 6x + 20 y - 32 = 0 represents a hyperbola, then ...

    Text Solution

    |

  16. IF the locus of the point of intersection of two perpendicular tangent...

    Text Solution

    |

  17. If the line y = mx + sqrt(a^(2) m^(2) -b^(2)), m = (1)/(2) touches the...

    Text Solution

    |

  18. A common tangent to 9x^(2) - 16y^(2) = 144 and x^(2) + y^(2) = 9 is

    Text Solution

    |

  19. Area of the triangle formed by any arbitrary tangents of the hyperbola...

    Text Solution

    |

  20. If the normal to the rectangular hyperbola xy = 4 at the point (2t, ...

    Text Solution

    |