Home
Class 12
MATHS
Evaluate lim(x to 1//4) (4x - 1)/(2sqrt...

Evaluate `lim_(x to 1//4) (4x - 1)/(2sqrt(x) - 1)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{1}{4}} \frac{4x - 1}{2\sqrt{x} - 1}, \] we will follow these steps: ### Step 1: Substitute the limit value First, we substitute \( x = \frac{1}{4} \) into the expression to check if we get an indeterminate form. \[ 4\left(\frac{1}{4}\right) - 1 = 1 - 1 = 0, \] \[ 2\sqrt{\frac{1}{4}} - 1 = 2 \cdot \frac{1}{2} - 1 = 1 - 1 = 0. \] Since both the numerator and denominator approach 0, we have an indeterminate form of type \( \frac{0}{0} \). ### Step 2: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if we have \( \frac{0}{0} \) or \( \frac{\infty}{\infty} \), we can take the derivative of the numerator and the derivative of the denominator. **Differentiate the numerator:** \[ \frac{d}{dx}(4x - 1) = 4. \] **Differentiate the denominator:** \[ \frac{d}{dx}(2\sqrt{x} - 1) = 2 \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}}. \] ### Step 3: Rewrite the limit Now we can rewrite the limit using the derivatives we found: \[ \lim_{x \to \frac{1}{4}} \frac{4}{\frac{1}{\sqrt{x}}}. \] ### Step 4: Substitute the limit value again Now substitute \( x = \frac{1}{4} \) into the new expression: \[ \sqrt{\frac{1}{4}} = \frac{1}{2} \Rightarrow \frac{1}{\sqrt{\frac{1}{4}}} = 2. \] Thus, we have: \[ \lim_{x \to \frac{1}{4}} \frac{4}{\frac{1}{\sqrt{x}}} = 4 \cdot 2 = 8. \] ### Final Answer Therefore, the limit is \[ \boxed{8}. \]

To evaluate the limit \[ \lim_{x \to \frac{1}{4}} \frac{4x - 1}{2\sqrt{x} - 1}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto 1//2) ((4x^(2)-1))/((2x-1)) .

Evaluate lim_(xto1) (x^(4)-sqrt(4))/(sqrt(x)-1) .

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate : lim_( x -> 1 ) ( sqrt(x) - 1 + sqrt( x -1 ) )/( sqrt( x^2 -1 ))

Evaluate : lim_( x -> 0 ) ( 5^x - 1 )/ ( sqrt( 4 + x ) - 2 )

Evaluate lim_(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

lim_(x-> -1) (x+1)/(2-sqrt(4+x+x^2))

Evaluate lim_(x to p) (sqrt(1 + x) + sqrt(1 - x))/(1 - x)

Evaluate : lim_( x -> 1 ) ( sqrt( 4 + x ) - sqrt( 5 ) )/ ( x-1 )

The value of lim_(x to 0) (sqrt(x^2+1)-1)/(sqrt(x^2+16)-4) is

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

    Text Solution

    |

  2. Evaluate lim(x to 3) (x - 3)/(4x^(2) - 15x + 9)

    Text Solution

    |

  3. Evaluate lim(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

    Text Solution

    |

  4. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  5. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |

  6. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) 9x^(4) ...

    Text Solution

    |

  7. Evaluate lim(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 ...

    Text Solution

    |

  8. Evaluate lim(x to 4) (x^(5) - 1024)/(x - 5)

    Text Solution

    |

  9. Evaluate lim(x to 16) (x^(3//2) - 64)/(x - 16)

    Text Solution

    |

  10. Evaluate lim(x to 0) (1 - x^(n) - 1)/(x)

    Text Solution

    |

  11. Evaluate lim(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

    Text Solution

    |

  12. If lim(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

    Text Solution

    |

  13. If lim(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

    Text Solution

    |

  14. If lim(x to a) (x^(5) + a^(5))/(x + a) = 405, Find the value of a.

    Text Solution

    |

  15. If lim(x to 0) (x^(9) + a^(9))/(x + a) = 9, find the value of a

    Text Solution

    |

  16. If lim(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim(x to k) ...

    Text Solution

    |

  17. If lim(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim(x to 3) (x^(3) -...

    Text Solution

    |

  18. Evaluate lim(x to 2) (sqrt(3 - x) - 1)/(2 - x)

    Text Solution

    |

  19. Evaluate lim(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

    Text Solution

    |

  20. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |