Home
Class 12
MATHS
Evaluate lim(x to 2) [(1)/(x - 2) - (2(2...

Evaluate `lim_(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2(2x - 3)}{x^3 - 3x^2 + 2x} \right], \] we will follow these steps: ### Step 1: Simplify the Denominator First, we simplify the denominator \(x^3 - 3x^2 + 2x\). We can factor out \(x\): \[ x^3 - 3x^2 + 2x = x(x^2 - 3x + 2). \] Next, we can factor the quadratic \(x^2 - 3x + 2\): \[ x^2 - 3x + 2 = (x - 1)(x - 2). \] So, the complete factorization of the denominator is: \[ x^3 - 3x^2 + 2x = x(x - 1)(x - 2). \] ### Step 2: Rewrite the Expression Now we can rewrite the limit expression: \[ \lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2(2x - 3)}{x(x - 1)(x - 2)} \right]. \] ### Step 3: Combine the Fractions To combine the two fractions, we need a common denominator, which is \(x(x - 1)(x - 2)\): \[ \lim_{x \to 2} \left[ \frac{x(x - 1) - 2(2x - 3)}{x(x - 1)(x - 2)} \right]. \] ### Step 4: Simplify the Numerator Now, simplify the numerator: \[ x(x - 1) - 2(2x - 3) = x^2 - x - (4x - 6) = x^2 - x - 4x + 6 = x^2 - 5x + 6. \] ### Step 5: Factor the Numerator Next, we factor \(x^2 - 5x + 6\): \[ x^2 - 5x + 6 = (x - 2)(x - 3). \] ### Step 6: Substitute Back into the Limit Now we substitute this back into our limit: \[ \lim_{x \to 2} \frac{(x - 2)(x - 3)}{x(x - 1)(x - 2)}. \] ### Step 7: Cancel Common Factors We can cancel the \((x - 2)\) terms: \[ \lim_{x \to 2} \frac{x - 3}{x(x - 1)}. \] ### Step 8: Evaluate the Limit Now we can directly substitute \(x = 2\): \[ \frac{2 - 3}{2(2 - 1)} = \frac{-1}{2 \cdot 1} = -\frac{1}{2}. \] Thus, the limit is \[ \boxed{-\frac{1}{2}}. \]

To evaluate the limit \[ \lim_{x \to 2} \left[ \frac{1}{x - 2} - \frac{2(2x - 3)}{x^3 - 3x^2 + 2x} \right], \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(x to 2)(4x+3)/(x+2) .

Evaluate lim_(x to 2) [(x^(2) - 4)/(2x + 2)]

Evaluate lim_(x to 2) (sqrt(3 - x) - 1)/(2 - x)

Evaluate lim_(x to 3)(x^(2) - 9)/(x + 2)

Evaluate lim_(x to 2) [4x^(2) + 3x + 9]

Evaluate, lim_(x to 2) (x^(3) - 8)/(x^(2) - 4)

Evaluate lim_(xtooo)(1+2/x)^(x)

Evaluate lim_(xtoo)(1-cosx)/(x^(2))

Evaluate lim_(x rarr 2) (2x-2) .

Evaluate lim_(x to 2) (x^(3) - 3x^(2) + 4)/(x^(4) - 8x^(2) + 16)

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 3) (x - 3)/(4x^(2) - 15x + 9)

    Text Solution

    |

  2. Evaluate lim(x to 1//4) (4x - 1)/(2sqrt(x) - 1)

    Text Solution

    |

  3. Evaluate lim(x to 2) [(1)/(x - 2) - (2(2x - 3))/(x^(3) - 3x^(2) + 2x)]

    Text Solution

    |

  4. Evaluate lim(x to 2) (x^(2) - 4) [(1)/(x + 2) + (1)/(x - 2)]

    Text Solution

    |

  5. Evaluate lim(x to sqrt(3)) (3x^(8) + x^(7) - 11x^(6) - 2x^(5) 9x^(4) ...

    Text Solution

    |

  6. Evaluate lim(x to 3) (x^(3) - 7x^(2) + 15x - 9)/(x^(4) - 5x^(3) + 27 ...

    Text Solution

    |

  7. Evaluate lim(x to 4) (x^(5) - 1024)/(x - 5)

    Text Solution

    |

  8. Evaluate lim(x to 16) (x^(3//2) - 64)/(x - 16)

    Text Solution

    |

  9. Evaluate lim(x to 0) (1 - x^(n) - 1)/(x)

    Text Solution

    |

  10. Evaluate lim(x to a) ((x + 4)^(5//4) - (a + 4)^(5//4))/(x - a)

    Text Solution

    |

  11. If lim(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

    Text Solution

    |

  12. If lim(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

    Text Solution

    |

  13. If lim(x to a) (x^(5) + a^(5))/(x + a) = 405, Find the value of a.

    Text Solution

    |

  14. If lim(x to 0) (x^(9) + a^(9))/(x + a) = 9, find the value of a

    Text Solution

    |

  15. If lim(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim(x to k) ...

    Text Solution

    |

  16. If lim(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim(x to 3) (x^(3) -...

    Text Solution

    |

  17. Evaluate lim(x to 2) (sqrt(3 - x) - 1)/(2 - x)

    Text Solution

    |

  18. Evaluate lim(x to 3) (sqrt(x + 3) - sqrt(6))/(x^(2) - 9)

    Text Solution

    |

  19. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |

  20. Evaluate lim(x to 0) ("sin"ax)/(x)

    Text Solution

    |