Home
Class 12
MATHS
If lim(x to a) (xsqrt(x) - a sqrt(a))/(...

If `lim_(x to a) (xsqrt(x) - a sqrt(a))/(x - 1) = lim_(x to 3) (x^(3) - 27)/(x - 3)`, find the value of a.

Text Solution

Verified by Experts

The correct Answer is:
324
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to 1) (x^(3) - 1)/(x - 1) = lim_(x to k) (x^(4) - k^(4))/(x^(3) - k^(3)) , find the value of k.

lim_(x to 3) (x^(2) - 27)/(x^(2) - 9) is equal to

If lim_(x to 2) (x - 2)/(""^(3)sqrt(x) - ""^(3)sqrt(2)) = lim_(x to k) (x^(2) - k^(2))/(x - k) find the value of K

Evaluate lim_(x to 1) (x^(3) - 1)/(x - 1)

lim_(x rarr1)(sqrt(x)+3)

lim_(x rarr3)(x^(3)-27)/(x^(2)-9)

lim_(x rarr0)(3sqrt(1+x)3sqrt(-1-x))/(x)

Evaluate, lim_(x to 1) (x^(4)-1)/(x-1)=lim_(x to k) (x^(3)-k^(3))/(x^(2)-k^(2)) , then find the value of k.

lim_(x rarr oo)(sqrt(x)-3)/(sqrt(x)+3)

lim_(x rarr9)(x^((3)/(2))-27)/(x-9)