Home
Class 12
MATHS
Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(...

Evaluate `lim_(x to 0) ("sin"^(2) 4x)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to 0} \frac{\sin^2(4x)}{x^2} \), we can follow these steps: ### Step 1: Rewrite the limit We start with the limit expression: \[ \lim_{x \to 0} \frac{\sin^2(4x)}{x^2} \] ### Step 2: Introduce a factor to facilitate the limit We can rewrite the expression by introducing \( \frac{4}{4} \) (which is equal to 1) in the limit: \[ \lim_{x \to 0} \frac{\sin^2(4x)}{x^2} = \lim_{x \to 0} \frac{\sin^2(4x)}{(4x)^2} \cdot \frac{(4x)^2}{x^2} \] This simplifies to: \[ \lim_{x \to 0} \frac{\sin^2(4x)}{(4x)^2} \cdot 16 \] ### Step 3: Apply the limit property Now we can apply the known limit property \( \lim_{u \to 0} \frac{\sin u}{u} = 1 \). Here, let \( u = 4x \). As \( x \to 0 \), \( u \to 0 \) as well. Thus: \[ \lim_{x \to 0} \frac{\sin(4x)}{4x} = 1 \] So: \[ \lim_{x \to 0} \frac{\sin^2(4x)}{(4x)^2} = \left(\lim_{x \to 0} \frac{\sin(4x)}{4x}\right)^2 = 1^2 = 1 \] ### Step 4: Combine results Now substituting this back into our expression: \[ \lim_{x \to 0} \frac{\sin^2(4x)}{x^2} = 1 \cdot 16 = 16 \] ### Final Answer Thus, we conclude that: \[ \lim_{x \to 0} \frac{\sin^2(4x)}{x^2} = 16 \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) ("sin"(5x)/(4))/(x^(2))

Evaluate lim_(x to 0) ("sin"^(2) ax)/("sin"^(2) bx)

Evaluate lim_(x to 0) ("sin" 4x)/(6x)

Eavaluate lim_(x to 0) (sin^(2)2x)/(sin^(2)4x)

Evaluate lim_(x to 0) ("sin"^(2) (3x//2x))/(x)

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

Evaluate lim_(x to 0) [(3x^(2) + 4x + 5)/(x^(2) - 2x + 3)]

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 0) (tan 5x)/(2x)

    Text Solution

    |

  2. Evaluate lim(x to 0) ("sin"ax)/(x)

    Text Solution

    |

  3. Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(2))

    Text Solution

    |

  4. Evaluate lim(x to 0) ("sin"(5x)/(4))/(x^(2))

    Text Solution

    |

  5. Evaluate lim(x to 0) ("sin"^(2) ax)/("sin"^(2) bx)

    Text Solution

    |

  6. Evaluate lim(x to 0) ("sin"5x)/("sin"7x)

    Text Solution

    |

  7. Evaluate lim(x to 0) (1 - cos 2x)/(x)

    Text Solution

    |

  8. Evaluate lim(x to 0) (1 - cos ax)/(1 - cos bx)

    Text Solution

    |

  9. Evaluate lim(x to 0) (tan x - "sin" x)/(x^(3))

    Text Solution

    |

  10. Evaluate lim(x to 0) (x^(3) cot x)/(1 - cos x)

    Text Solution

    |

  11. Evaluate lim(x to (pi)/(4)) ("sin" x - cos x)/(x - (pi)/(4))

    Text Solution

    |

  12. Evaluate lim(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

    Text Solution

    |

  13. Find the derivative of f(x) = x^(3) + 1 at x = - 1

    Text Solution

    |

  14. Find the derivative of f(x) = 2 x^(3) + 3x^(2) + 5x + 9 at x = 2

    Text Solution

    |

  15. Find the derivative of sqrt(3x + 5) using first principle of derivativ...

    Text Solution

    |

  16. Find the derivative of x^(2) + 5x + 3 using first principle of derivat...

    Text Solution

    |

  17. Find the derivative of (3x - 2) (x + 1) using first principle of deriv...

    Text Solution

    |

  18. Find the derivative of (2x + 3)/(4x + 1) using first principle of deri...

    Text Solution

    |

  19. Find the derivative of e^(7 x - 2) using first principle of derivative

    Text Solution

    |

  20. Find the derivative of e^(x^(2)-5x) using first principle of derivativ...

    Text Solution

    |