Home
Class 12
MATHS
Evaluate lim(x to 0) ("sin"^(2) ax)/("s...

Evaluate `lim_(x to 0) ("sin"^(2) ax)/("sin"^(2) bx)`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{\sin^2(ax)}{\sin^2(bx)}, \] we can follow these steps: ### Step 1: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{\sin^2(ax)}{\sin^2(bx)} = \lim_{x \to 0} \left( \frac{\sin(ax)}{\sin(bx)} \right)^2. \] ### Step 2: Use the limit property We know that as \( x \to 0 \), \( \frac{\sin(kx)}{kx} \to 1 \) for any constant \( k \). Therefore, we can express \( \sin(ax) \) and \( \sin(bx) \) in terms of their arguments: \[ \frac{\sin(ax)}{ax} \cdot \frac{ax}{bx} \cdot \frac{bx}{\sin(bx)}. \] ### Step 3: Substitute and simplify Substituting this into our limit, we have: \[ \lim_{x \to 0} \left( \frac{\sin(ax)}{ax} \cdot \frac{ax}{bx} \cdot \frac{bx}{\sin(bx)} \right)^2. \] ### Step 4: Evaluate each part of the limit As \( x \to 0 \): - \( \frac{\sin(ax)}{ax} \to 1 \) - \( \frac{bx}{\sin(bx)} \to 1 \) Thus, we can simplify our limit to: \[ \lim_{x \to 0} \left( 1 \cdot \frac{a}{b} \cdot 1 \right)^2 = \left( \frac{a}{b} \right)^2. \] ### Step 5: Final result Therefore, the limit evaluates to: \[ \lim_{x \to 0} \frac{\sin^2(ax)}{\sin^2(bx)} = \left( \frac{a}{b} \right)^2. \]
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise SECTION - A|50 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Section - B|34 Videos
  • LIMITS AND DERIVATIVES

    AAKASH INSTITUTE|Exercise Example|41 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION - J)(ANKASH CHALLENGERS QUESTIONS)|4 Videos
  • MATHEMATICAL REASONING

    AAKASH INSTITUTE|Exercise Assignment (SECTION-D) (Assertion-Reason Type Questions)|15 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) ("sin"ax)/(x)

Evaluate lim_(x to 0) ("sin"^(2) 4x)/(x^(2))

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

Evaluate lim_(xto0) {1^(1//sin^(2)x)+2^(1//sin^(2)x)+...+n^(1//sin^(2)x)}^(sin^(2)x) .

Evaluate lim_(x to 0) ("sin"(5x)/(4))/(x^(2))

Evaluate lim_(xto 0)(sin (picos^(2)x))/(x^(2))

Evaluate lim_(xto0) sin(picos^(2)x)/(x^(2)).

AAKASH INSTITUTE-LIMITS AND DERIVATIVES -Try yourself
  1. Evaluate lim(x to 0) ("sin"^(2) 4x)/(x^(2))

    Text Solution

    |

  2. Evaluate lim(x to 0) ("sin"(5x)/(4))/(x^(2))

    Text Solution

    |

  3. Evaluate lim(x to 0) ("sin"^(2) ax)/("sin"^(2) bx)

    Text Solution

    |

  4. Evaluate lim(x to 0) ("sin"5x)/("sin"7x)

    Text Solution

    |

  5. Evaluate lim(x to 0) (1 - cos 2x)/(x)

    Text Solution

    |

  6. Evaluate lim(x to 0) (1 - cos ax)/(1 - cos bx)

    Text Solution

    |

  7. Evaluate lim(x to 0) (tan x - "sin" x)/(x^(3))

    Text Solution

    |

  8. Evaluate lim(x to 0) (x^(3) cot x)/(1 - cos x)

    Text Solution

    |

  9. Evaluate lim(x to (pi)/(4)) ("sin" x - cos x)/(x - (pi)/(4))

    Text Solution

    |

  10. Evaluate lim(x to (pi)/(4)) (cos x - "sin" x)/(cos 2x)

    Text Solution

    |

  11. Find the derivative of f(x) = x^(3) + 1 at x = - 1

    Text Solution

    |

  12. Find the derivative of f(x) = 2 x^(3) + 3x^(2) + 5x + 9 at x = 2

    Text Solution

    |

  13. Find the derivative of sqrt(3x + 5) using first principle of derivativ...

    Text Solution

    |

  14. Find the derivative of x^(2) + 5x + 3 using first principle of derivat...

    Text Solution

    |

  15. Find the derivative of (3x - 2) (x + 1) using first principle of deriv...

    Text Solution

    |

  16. Find the derivative of (2x + 3)/(4x + 1) using first principle of deri...

    Text Solution

    |

  17. Find the derivative of e^(7 x - 2) using first principle of derivative

    Text Solution

    |

  18. Find the derivative of e^(x^(2)-5x) using first principle of derivativ...

    Text Solution

    |

  19. Find the derivative of sin(4x - 1) using first principle of derivative

    Text Solution

    |

  20. Find the derivative of cos (x^(2) + 3) using first principle of deriva...

    Text Solution

    |