Home
Class 12
MATHS
Find the intervals in which f(x)=4x^(3)-...

Find the intervals in which `f(x)=4x^(3)-45x^(2)+168x-16` is (i) Strictly increasing (ii) Strictly decreasing

Text Solution

Verified by Experts

`f(x)=4x^(3)-45x^(2)+168x-16` ltbr? `f'(x)=12x^(2)-90x+168`
`= 6(2x^(2)-15x+28)`
`f'(x)=6(x-4)(2x-7)`
(i) For strictly increasing
`f'(x) gt 0`
`implies (x-4)(2x-7) gt 0`
`implies x in (-oo,(7)/(2)) cup (4,oo)`

(ii) For strictly decreasing
`f'(x) lt 0`
`implies (x-4)(2x-7) lt 0`
`implies x in ((7)/(2),4)`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    AAKASH INSTITUTE|Exercise TRY YOURSELF|39 Videos
  • APPLICATION OF DERIVATIVES

    AAKASH INSTITUTE|Exercise Assignment SECTION-A (Competition Level Questions)|50 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos

Similar Questions

Explore conceptually related problems

Find the values of x for which f(x)= 2x^(3)-15x^(2)-144x-7 is (a) Strictly increasing (b) strictly decreasing

Find the intervals in which the function f(x)=3x^(4)-4x^(3)-12x^(2)+5 is (a) strictly increasing (b) strictly decreasing

Find the intervals in which f(x)=(3)/(2)x^(4)-4x^(3)-45x^(2)+51

Find the intervals in which the function f(x)=(3)/(2)x^(4)-4x-45x+51 is (a) strictly increasing.(b) strictly decreasing.

Find the intervals in which the function f given by f(x)=x^(2)-4x+6 is (a) strictly increasing (b) strictly decreasing

Find the interval in which the function f given by f(x)=x^(2)-2x+3 is (a) Strictly increasing (b) Strictly decreasing

Find the intervals on which the function f(x) = 6 - 9x - x^(2) is (a) strictly increasing (b) strictly decreasing

Find the intervals in which the function f given by f(x)=2x^(2)-3x is (a) strictly increasing (b) strictly decreasing

Find the intervals on which the function f(x) = 10 - 6x - 2x^(2) is (a) strictly increasing (b) strictly decreasing.

Find the intervals in which the function f given f(x)=2x^(3)-3x^(2)-36x+7 is (a) strictly increasing (b) strictly decreasing