Home
Class 12
MATHS
f(x) = 2x^2 -6x^2 + 6x +5 द्वारा प्रदत...

`f(x) = 2x^2 -6x^2 + 6x +5 ` द्वारा प्रदत के लिए स्थानीय उच्चतम और स्थानीय निम्नतम के सभी बिंदुओं को ज्ञात कीजिए|

Text Solution

Verified by Experts

`f'(x)=6x^(2)-12x+6`
`f'(x)=6(x-1)^(2)`
`f'(x) =0 " at" x=1 `
`x=1` is the only critical point .
Also , `f''(x) =12(x-1)`
`f''(x)=0 " at" x=1`
x=1 is the point of inflection .
So, there is no point of local maxima nor a point of local minima.
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    AAKASH INSTITUTE|Exercise TRY YOURSELF|39 Videos
  • APPLICATION OF DERIVATIVES

    AAKASH INSTITUTE|Exercise Assignment SECTION-A (Competition Level Questions)|50 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos

Similar Questions

Explore conceptually related problems

If f (x) =x ^(2) -6x +5,0 le x le 4 then f (8)=

f(x)=2x^(3)-6x^(2)+6x+5(n in R)then f'(x)=

f(x)=x^(3)-6x^(2)+2x-4,g(x)=1-2x

Let f(x)=x^3-6x^2+12x-3 . Then at x=2 f(x) has

f(x)=ln((x^(2)-5x+6)/(x^(2)+4x+6))

int(x+2)/(2x^(2)+6x+5)*dx