Home
Class 12
MATHS
Show that 2 sin x + tanx ge 3x , where ...

Show that `2 sin x + tanx ge 3x ,` where ` 0 le x lt (pi)/(2)`

Text Solution

Verified by Experts

Let `f(x)=2 sinx + tan x-3x `
We have ` f'(x)=2 cos x + sec^(2)x -3 `
`=(2)/(sec x)+ sec^(2)x-3 `
`=(2+ sec^(3)x-3 sec x)/(sec x )`
`=(sec^(3)x-3sec x+2)/(sec x)`
`=((sec x-1)^(2)(sec+2))/(secx)` ........(i)
[The polynomial ` t^(3)-3t+2` factors as `(t-1)^(2)(t+2)`]
For ` 0 lt x lt (pi)/(2)`
`f'(x) gt 0` from (i)
Thus `f(x)` is an increasing function in `0 lt x lt (pi)/(2)`
`:. 2 sin x + tan x-3x gt 0, AA x in (0,(pi)/(2))` ........(A)
Note that , `f(0)=0`
i.e. ` 2 sin x + tan x -3 x =0 " for " x=0` .......(B)
Combining (A) and (B) , we have
` 2 sin x + tan x - 3x ge 0`
i.e., ` 2 sinx + tan x ge 3x AA x in [0,(pi)/(2))`
Promotional Banner

Topper's Solved these Questions

  • APPLICATION OF DERIVATIVES

    AAKASH INSTITUTE|Exercise TRY YOURSELF|39 Videos
  • APPLICATION OF DERIVATIVES

    AAKASH INSTITUTE|Exercise Assignment SECTION-A (Competition Level Questions)|50 Videos
  • APPLICATION OF INTEGRALS

    AAKASH INSTITUTE|Exercise Assignment Section - I Aakash Challengers Questions|2 Videos

Similar Questions

Explore conceptually related problems

Show that 2sin x+tan x>=3x where 0

Show that 2sin x+tan x>=3x, where0<=x<(pi)/(2)

If : sin x +cos x = sin 2 x + cos 2 x , "where" 0 lt x le (pi)/(2), "then x":=

If : sin 5x + sin 3x + sin x = 0 , where 0 lt x le (pi)/2 , then : x =

Solve 2 cos^(2) x+ sin x le 2 , where pi//2 le x le 3pi//2 .

Let f (x) = {{:((1+sin x )",", when, 0 le x lt (pi)/(2)), (" " 1",", when, x lt 0 ):} Show that f ' (0) does not exist.

Principal solutions of the equation sin 2x + cos 2x =0 . Where pi lt x lt 2pi are

{:(f(x) = cos x and H_(1)(x) = min{f(t), 0 le t lt x},),(0 le x le (pi)/(2) = (pi)/(2)-x,(pi)/(2) lt x le pi),(f(x) = cos x and H_(2) (x) = max {f(t), o le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x","(pi)/(2) lt x le pi),(g(x) = sin x and H_(3)(x) = min{g(t),0 le t le x},),(0 le x le (pi)/(2)=(pi)/(2) - x, (pi)/(2) le x le pi),(g(x) = sin x and H_(4)(x) = max{g(t),0 le t le x},),(0 le x le (pi)/(2) = (pi)/(2) - x, (pi)/(2) lt x le pi):} Which of the following is true for H_(3) (x) ?