Home
Class 12
MATHS
Find shortest distance between the line ...

Find shortest distance between the line
`vecr = (5hati + 7hatj + 3hatk )+lambda (5hati-6hatj+2hatk)and vecr = (9hati+13hatj+15hatk)+s (-3hati+hatj-hatk)`

Text Solution

Verified by Experts

The distance between two lines
`vecr = veca_(2)+lambda vecb_(1) and vecr = veca_(2)+muvecb_(2)`
is given by
`d= abs(((veca_(2)-veca_(1))cdot(vecb_(1)xxvecb_(2)))/(abs(vecb_(1)xxvecb_(2))))`
`=abs(((4hati+6hatj+12hatk)cdot(4hati-hatj-13hatk))/(sqrt(186)))` `vecb_(1)xxvecb_(2)=abs[[hati, hatj,hatk],[5, -6, 2],[-3,1,-1]]`
`=abs(16-6-156)/(sqrt(186))` `=4hati - hatj-13hatk`
`=146/sqrt(186)`
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE|Exercise Illustration|4 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE|Exercise TRY YOURSELF|97 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

The shortest distance between the lines vecr = (2hati - hatj) + lambda(2hati + hatj - 3hatk) vecr = (hati - hatj + 2hatk) + lambda(2hati + hatj - 5hatk)

If d is the shortest distance between the lines vecr =(3hati +5hatj + 7hatk)+lambda (hati +2hatj +hatk) and vecr = (-hati -hatj-hatk)+mu(7hati-6hatj+hatk) then 125d^(2) is equal to ____________.

Find the angle between the line vecr = (hati +2hatj -hatk ) +lambda (hati - hatj +hatk) and vecr cdot (2hati - hatj +hatk) = 4.

Find the shortest distance between the lines vecr = 2hati - hatj + hatk + lambda(3hati - 2hatj + 5hatk), vecr = 3hati + 2hatj - 4hatk + mu(4hati - hatj + 3hatk)

Find the shortest distance between the lines vecr = 3 hati + 2hatj - 4 hatk + lamda ( hati +2 hatj +2 hatk ) and vecr = 5 hati - 2hatj + mu ( 3hati + 2hatj + 6 hatk) If the lines intersect find their point of intersection

The shortest distance between the lines vecr = (-hati - hatj) + lambda(2hati - hatk) and vecr = (2hati - hatj) + mu(hati + hatj -hatk) is

Find the shortest distance and the vector equation of the line of shortest distance between the lines given by vecr=3hati+8hatj+3hatk+lamda(3hati-hatj+hatk) and vecr=-3hati-7hatj+6hatk+mu(-3hati+2hatj+4hatk)

Find the shortest distance between the lines vecr = hati+ hatj+hatk+lambda(3hati-hatj) and vecr=4hati-hatk+mu(2hati+3hatk)

Find the shrotest distance between the lines vecr = hati+hatj+ lambda(2hati-hatj+hatk) and vecr= 2hati+hatj-hatk+mu(2hati-hatj+hatk) .

The shortest distance between the lines r = ( - hati - hatj - hatk ) + lamda ( 7 hati - 6 hatj + hatk ) and r = ( 3 hati + 5 hatj + 7 hatk ) + mu ( hati - 2 hatj + hatk )