Home
Class 12
MATHS
STATEMENT-1 : Equation of the plane thro...

STATEMENT-1 : Equation of the plane through (2, 3, 3) and (1, -3, -4) and parallel to `(x-1)/3=(y-3)/4=(z+1)/5`
is `x + y - 7z =16`.
STATEMENT-2 : The shortest distance between two non-intersecting lines `vecr=veca+lambda vecb and vecr=vecc +muvecd` is
`abs(([(vecc-veca)vecb vecd])/(vecbxxvecd)).`
STATEMENT-3 : The vector equation of a plane through a point having position vector `veca` and parallel to vector
`vecb and vecc`is,` vecr = veca + lambdavecb + mu vecc`.

A

F F F

B

F F T

C

T F T

D

F T F

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION - I|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION - J|10 Videos
  • THREE DIMENSIONAL GEOMETRY

    AAKASH INSTITUTE|Exercise ASSIGNMENT SECTION - G|7 Videos
  • STRAIGHT LINES

    AAKASH INSTITUTE|Exercise SECTION-J (AAKASH CHALLENGERS QUESTIONS)|5 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

The shortest distance between the lines vecr-veca+kvecb and vecr=veca+lvecc is ( vecb and vecc are non collinear) (A) 0 (B) |vecb.vecc| (C) (|vecbxxvecc|)/(|veca|) (D) (|vecb.vecc|)/(|veca|)

Show that the plane through the points veca,vecb,vecc has the equation [vecr vecb vecc]+[vecr vecc veca]+[vecr veca vecb]=[veca vecb vecc]

A, B, C and D have position vectors veca, vecb, vecc and vecd , repectively, such that veca-vecb = 2(vecd-vecc) . Then

Prove that the shortest distance between two lines AB and CD is (|(vecc-veca).(vecb-veca)xx(vecd-vecc)|)/(|(vecb-veca)xxvec(d-vecc)|) where veca,vecb,vecc,vecd are the position vectors of points A,B,C,D respectively.

Given |veca|=|vecb|=1 and |veca+vecb|=sqrt(3) . If vecc be a vector such that vecc-veca-2vecb=3(vecaxxvecb) , then vecc.vecb is equal to

Let veca and vecb are vectors such that |veca|=2, |vecb|=3 and veca. vecb=4 . If vecc=(3veca xx vecb)-4vecb , then |vecc| is equal to

Show that the points having position vectors (veca-2vecb+3vecc),(-2veca+3vecb+2vecc),(-8veca+13vecb) re collinear whatever veca,vecb,vecc may be

Show that the points whose position vectors are veca,vecb,vecc,vecd will be coplanar if [veca vecb vecc]-[veca vecb vecd]+[veca vecc vecd]-[vecb vecc vecd]=0