Home
Class 12
MATHS
If vecp is a unti vector and (vecy-vecp)...

If `vecp` is a unti vector and `(vecy-vecp).(vecy+vecp)=8`, then find `|vecy|`

Text Solution

Verified by Experts

Since `vecp` is a unit vector, `|vecp|=1`. Also,
`(vecy-vecp).(vecy+vecp)=8=8`
`rArr vecy.vecy+vecy.vecp-vecp.vecy-vecp.vecp=8`
`|vecy|^(2)-|vecp|^(2)=8`
`|vecy|^(2)=9`
`rArr " "|vecy|=3" "` (as magnitude of a vector is non-negative)
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

if vecP +vecQ = vecP -vecQ , then

If vecp,vecq and vecr are perpendicular to vecq + vecr , vec r + vecp and vecp + vecq respectively and if |vecp +vecq| = 6, |vecq + vecr| = 4sqrt3 and |vecr +vecp| = 4 then |vecp + vecq + vecr| is

If vecx and vecy are two vector such that abs(vecx)=abs(vecy) and abs(vecx-vecy)=nabs(vecx+vecy) then angle between vecx and vecy

Solve the following siultaneous equation for vectors vecx and vecy, if vecx+vecy=veca, vecx xxvecy=vecb, vecx.veca=1

Given two orthogonal vectors vecA and VecB each of length unity. Let vecP be the vector satisfying the equation vecP xxvecB=vecA-vecP . then vecP is equal to

Given two orthogonal vectors vecA and vecB each of length unity. Let vecP be the vector satisfying the equation vecP xxvecB=vecA-vecP . then vecP is equal to

For any two vectors vecp and vecq , show that |vecp.vecq| le|vecp||vecq| .

For three vectors , vecX, vecY and vecZ, vecZ=vecX+vecY and |vecX|=12, |vecY|=5 and |vecZ|=13 Calculate the angle between vecY and vecZ .

Given two orthogonal vectors vecA and VecB each of length unity. Let vecP be the vector satisfying the equation vecP xxvecB=vecA-vecP . then (vecP xx vecB ) xx vecB is equal to

Given two orthogonal vectors vecA and VecB each of length unity. Let vecP be the vector satisfying the equation vecP xxvecB=vecA-vecP . then (vecP xx vecB ) xx vecB is equal to