Home
Class 12
MATHS
For any two vectors veca and vecb prove ...

For any two vectors `veca and vecb` prove that `|veca+vecb|lt+|veca|+|vecb|`

Text Solution

Verified by Experts

The inequality holds trivially in case either `veca=vec0` or `vecb=vec0`. So, let `|veca|ne0ne|vecb|`. Then,
`|vec+vecb|^(2)=(veca+vecb)^(2)=(veca+vecb)^(2).(veca+vecb)`
`=veca.veca+veca.vecb+vecb.veca+vecb.vecb`
`=|veca|^(2)+2veca.vecb+|vecb|^(2)`
`le |veca|^(2)+2|veca.vecb|+|vecb|^(2)" "("Since"x le |x|AA x epsilon "R")`
`le|veca|+2|veca||vecb|+|vecb|^(2)`
`le (|veca|+|vecb|)^(2)`
Hence `" " |veca+vecb| le |veca|+|vecb|`.
Note : If the equality holds in triangle in equality
`|veca+vecb|=|veca|+|vecb|`
then `" " |vecAC|=|vecAB|+|vecBC|`
Showing that the points A,B and C are collinear.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

For any two vectors veca and vecb prove that |veca.vecb|lt+|veca||vecb|

For any two vectors veca and vecb prove that |veca+vec|le|veca|+|vecb|

For any two vectors veca and vecb prove that |veca-vec|le|veca|+|vecb|

For any two vectors veca and vecb prove that |veca-vec|ge|veca|-|vecb|

For any two vectors veca and vecb write when | veca + vecb|= | veca-vecb| holds.

For any two vectors vec a\ a n d\ vec b prove that | vec axx vec b|^2=| (veca. veca , veca. vecb),(vecb.veca ,vecb.vecb)|

Find |veca-vecb| , if two vectors veca and vecb are such that |veca|=2,|vecb|=3 and veca.vecb=4 .

Find |veca-vecb| , if two vectors veca and vecb are such that |veca| = 2,|vecb|=3 and veca.vecb = 4 .

If veca and vecb are any two vectors , then prove that |vecaxxvecb|^(2)=|veca|^(2)|vecb|^(2)-(veca.vecb)^(2)=|{:(veca.veca,veca.vecb),(veca.vecb,vecb.vecb):}| or |vecaxxvecb|^(2)+(veca.vecb)^(2)=|veca|^(2)|vecb|^(2) (This is also known as Lagrange identily)

For two vectors veca and vecb,veca,vecb=|veca||vecb| then (A) veca||vecb (B) veca_|_vecb (C) veca=vecb (D) none of these