Home
Class 12
MATHS
If veca,vecb,vecc are coplanar vectors t...

If `veca,vecb,vecc` are coplanar vectors then find value of `[veca-vecb+vec2c vecb-vec c+2veca veca+2vecb-vec c]`

Text Solution

Verified by Experts

As `veca,vecbvec c` are coplanar then any linear combination of `veca,vecbvec c` are coplanar.
Hence, `[veca-vecb+2vec c vecb-vec c+2veca veca+2vecb-c]=0`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are non coplanar vectors then ([veca+2vecb vecb+2cvecc vecc+2veca])/([veca vecb vecc])= (A) 3 (B) 9 (C) 8 (D) 6

If veca, vecb, vecc are non-null non coplanar vectors, then [(veca-2vecb+vecc, vecb-2vecc+veca, vecc-2veca+vecb)]=

If veca,vecb, vecc are unit coplanar vectors then the scalar triple product [2veca-vecb 2vecb-c vec2c-veca] is equal to (A) 0 (B) 1 (C) -sqrt(3) (D) sqrt(3)

If veca, vecb, vecc are any three non coplanar vectors, then (veca+vecb+vecc).(vecb+vecc)xx(vecc+veca)

If veca,vecb,vecc are coplanar vectors , then show that |{:(veca,vecb,vecc),(veca*veca,veca*vecb,veca*vecc),(vecb*veca,vecb*vecb,vecb*vecc):}|=vec0

If veca, vecb, vec c are unit vectors, then the value of |veca-2vecb|^(2)+|vecb-2vec c|^(2)+|vec c-2 vec a|^(2) does not exceed to :

If [(veca+2vecb+3vecc)xx(vecb+2vecc+3veca)],.(vecc+2veca+3vecb)]=54 where veca,vecb and vecc are 3 non - coplanar vectors, then the values of |{:(veca.veca,veca.vecb,veca.vecc),(vecb.veca,vecb.vecb,vecb.vecc),(vecc.veca,vecc.vecb,vecc.vecc):}| is equal to

If veca, vecb and vecc are unit coplanar vectors, then the scalar triple product [(2veca-vecb, 2vecb-vecc, 2vecc-veca)]=

If veca, vecb, vecc are any three non coplanar vectors, then [(veca+vecb+vecc, veca-vecc, veca-vecb)] is equal to