Home
Class 12
MATHS
Solve for vec x,vecx xx vec b=veca, wher...

Solve for `vec x,vecx xx vec b=veca`, where `veca,vecb` are two given vectors such that `veca` is perpendicular to `vecb`.

Text Solution

Verified by Experts

`vec x xxvec b=veca` where `veca` bot `vecb` i.e., `veca.vecb=0` since `veca,vecb,vecaxxvecb`are three non-coplanar vectors, we can express `vec x` as a linear combination of these vectors.
`vecx=lambdaveca+muvecb+v(vecaxxvecb)`
`:. {lamdaveca+muvecb+v(vecaxxvecb)}xxvecb=veca`
`rArr lambda(vecaxxvecb)+mu(vecbxxvecb)+v(vecaxxvecb)xxvecb=veca`
`rArr lambda(vecaxxvecb)+v{(veca.xxvec b)vecb-(vecb.vecb)veca}=veca`
`rArr lambda(vecaxxvecb)-v|vecb|^(2)veca=veca+0(vecaxxvecb)`
Since `veca` and `vecaxxvecb` are non-collinear vectors equating cor=efficient of `vecaxxvecb` and `veca`on both sides we get,
`lambda=0" "-v|vecb|^(2)=1`
`rArr lambda=0" " v-(1)/(b^(2))," " {|vecb|^(2)=b," say"}`
With these values, our expression becomes
`x=-(1)/(b^(2))(vecaxxvecb)+muvecb`,where `mu` is an arbitrary scalar.
Comaring the above equation with `vecr=veca+tvecb`, we can say, geometrically that the points whose position vector `-(1)/(b^(2))(vecaxxvecb)` and is parallel to the vector `vecb`.
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ILLUSTRATION|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

Solve: vecrxxvecb=veca, where veca and vecb are given vectors such that veca.vecb=0 .

If (veca xx vecb) xx vecc = vec a xx (vecb xx vecc) , where veca, vecb and vecc are any three vectors such that veca.vecb ne 0, vecb.vecc ne 0 , then veca and vecc are:

if veca , vecb ,vecc are three vectors such that veca +vecb + vecc = vec0 then

If (veca xx vecb) xx vecc = veca xx (vecb xx vecc) where veca, vecb and vecc are any three vectors such that veca.vecb =0, vecb.vecc=0 then veca and vecc are:

If (veca xx vecb)xx vec c=veca xx (vecb xx vec c) , where veca, vecb and vec c are any three vectors such that veca*vecb ne 0, vecb*vec c ne 0 , then veca and vec c are :

If veca , vecb are two vectors such that | (veca+vecb)=|veca| then prove that 2 veca + vecb is perpendicular to vecb.

If |veca+vecb|=|veca-vecb|, (veca,vecb!=vec0) show that the vectors veca and vecb are perpendicular to each other.

veca, vecb ,vec c are three vectors with magnitude |veca| = 4, |vecb| = 4, |vec c| = 2 and such that veca is perpendicular to (vecb + vec c), vecb is perpendicular to (vec c +vec a) and vec c is perpendicualr to (vec a + vec b) . It follows that |veca + vecb+ vec c| is equal to :