Home
Class 12
MATHS
For any vector veca the value of (vecaxx...

For any vector `veca` the value of `(vecaxxhati)^2+(vecaxxhatj)^2+(vecaxxhatk)^2` is equal to (A) `4veca^2` (B) `2veca^2` (C) `veca^2` (D) `3veca^2`

A

`|veca|^(2)`

B

`2|veca|^(2)`

C

`3|veca|^(2)`

D

`4|veca|^(2)`

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION-C)|6 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise TRY YOURSELF|20 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

For any vector veca |veca xx hati|^(2) + |veca xx hatj|^(2) + |veca xx hatk|^(2) is equal to

|vecaxxhati|^2+|vecaxxhatj|^2+|vecaxxhatk|^2= (A) |veca|^2 (B) 2|veca|^2 (C) 3|veca|^2 (D) 4|veca|^2

(veca.hati)(vecaxxhati)+(veca.hatj)+(veca.hatk)(vecaxxhatk) is equal to

If veca is perpendicular to vecb then the vector vecaxx[vecaxx{vecaxx(vecaxxvecb)}] is equla (A) |veca|^2vecb (B) |veca|vecb (C) |veca|^3vecb (D) |veca|^4vecb

If veca is any vector and hati,hatj and hatk are unit vectors along the x,y and z directions then hatixx(vecaxxhati)+hatjxx(vecaxxhatj)+hatkxx(vecaxxveck)= (A) veca (B) -veca (C) 2veca (D) 0

The vector (veca-vecb)xx(veca+vecb) is equal to (A) 1/2 (vecaxxvecb) (B) vecaxxvecb (C) 2(veca+vecb) (D) 2(vecaxxvecb)

If veca is any then |veca.hati|^2+|veca.hati|^2+|veca.hatk|^2= (A) |veca|^2 (B) |veca| (C) 2|vecalpha| (D) none of these

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

prove that (veca.hati)(vecaxxhati)+(veca.hatj)(vecaxxhatj)+(veca.hatk)(vecaxxhatk)=vec0

If vecb and vecc are any two mutually perpendicular unit vectors and veca is any vector, then (veca.vecb)vecb+(veca.vecc)vecc+(veca.(vecbxxvecc))/(|vecbxxvecc|^2)(vecbxxvecc)= (A) 0 (B) veca (C) veca/2 (D) 2veca

AAKASH INSTITUTE-VECTOR ALGEBRA-ASSIGNMENT (SECTION-A)
  1. ABCDEF is a regular hexagon where centre O is the origin, if the posit...

    Text Solution

    |

  2. hati.(hatjxxhatk)+hatj.(hatixxhatk)+hatk.(hatixxhatj) is equal to

    Text Solution

    |

  3. For any vector veca the value of (vecaxxhati)^2+(vecaxxhatj)^2+(vecaxx...

    Text Solution

    |

  4. If |vecaxxvecb|=2,|veca.vecb|=2, then |veca|^(2)|vecb|^(2) is equal to

    Text Solution

    |

  5. |(vecaxxvecb)|^(2) is eqaul to

    Text Solution

    |

  6. If veca and vecb are unit vectors, then which of the following values ...

    Text Solution

    |

  7. If veca.veci=veca.(hati+hatj)=veca.(hati+hatj+hatk) . Then find the un...

    Text Solution

    |

  8. If veca +vecb +vecc =vec0, |veca| =3 , |vecb|=5 and |vecc| =7 , then ...

    Text Solution

    |

  9. The vector cosalpha.cosbetahati+cosalpha.sinbetahatj+sinalphahatk is a...

    Text Solution

    |

  10. If |veca|=|vecb|, then (veca+vecb).(veca-vecb) is equal to

    Text Solution

    |

  11. If veca and vecb are unit vectors inclined at an angle theta, then the...

    Text Solution

    |

  12. The projection of the vector hati+hatj+hatk along the vector of hatj i...

    Text Solution

    |

  13. If OACB is a parallelogram with vecOC=veca and vecAB=vecb, then vecOA ...

    Text Solution

    |

  14. If veca, vecb, vecc, vecd are the position vectors of points A, B, C a...

    Text Solution

    |

  15. If the vectors 3hati+lambdahatj+hatk and 2hati-hatj+8hatk are perpendi...

    Text Solution

    |

  16. The vectors 2hati+hatj-4hatk and ahati+bhatj+chatk are perpendicular, ...

    Text Solution

    |

  17. Let veca , vecb , vecc be three unit vectors such that |veca + vecb +...

    Text Solution

    |

  18. If theta is the angle between the vectors 2hati-2hatj+4hatk and 3hati+...

    Text Solution

    |

  19. If veca=2hati-3hatj-hatk and vecb=hati+4hatj-2hatk, then vecaxxvecb is

    Text Solution

    |

  20. If veca,vecb represent the diagonals of a rhombus, then

    Text Solution

    |