Home
Class 12
MATHS
If veca+2vecb=3vecb=0, then vecaxxvecb+v...

If `veca+2vecb=3vecb=0, then vecaxxvecb+vecbxxvecc+veccxxveca=` (A) `2(vecaxxvecb)` (B) `6(vecbxxvecc)` (C) 3(vecxxveca)` (D) 0

A

`6(vecbxxvecc)`

B

`2(vecaxxvecb)`

C

`3(veccxxveca)`

D

0

Text Solution

Verified by Experts

The correct Answer is:
1,2,3
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION-D) Comprehesion-I|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION-D) Comprehesion-II|3 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION-B)|32 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

If veca+2vecb=3vecb=0, then vecaxxvecb+vecbxxvecc+veccxxveca= (A) 2(vecaxxvecb) (B) 6(vecbxxvecc) (C) 3(veccxxveca) (D) 0

If veca+vecb+vecc=0 , prove that (vecaxxvecb)=(vecbxxvecc)=(veccxxveca)

Prove that: [vecaxxvecb ,vecbxxvecc ,veccxxveca] = [veca vecb vecc]^2

If 4veca+5vecb+9vecc=vec0 then (vecaxxvecb).{(vecbxxvecc)xx(veccxxveca)} is equal to

If veca, vecb, vecc are three vectors, then [(vecaxxvecb, vecbxxvecc, veccxxveca)]=

If 4veca+5vecb+9vecc=0 " then " (vecaxxvecb)xx[(vecbxxvecc)xx(veccxxveca)] is equal to

If (vecaxxvecb)xxvecc=vecax(vecbxxvecc0 then (A) (veccxxveca)xxvecb=0 (B) vecbxx(veccxxveca)=0 (C) veccxx(vecaxxvecb)=0 (D) none of these

Let veca,vecb,vecc be unit such that veca+vecb+vecc=vec0 . Which one of the following is correct? (A) vecaxxvecb=vecbxxvecc=veccxxveca=vec0 (B) vecaxxvecb=vecbxxvecc=veccxxveca!=vec0 (C) vecaxxvecb=vecbxxvecc=vecxxvecc!=vec0 (D) vecaxxvecb, vecbxxvecc, veccxxveca are mutually perpendicular

For vectors veca,vecb,vecc,vecd, vecaxx(vecbxxvecc)=(veca.vecc)vecb-(veca.vecb)vecc and (vecaxxvecb).(veccxxvecd)=(veca.vecc)(vecb.vecd)(veca.vecd)(vecb.vecc) Now answer the following question: (vecaxxvecb).(vecxxvecd) is equal to (A) (vecaxxvecd).(vecbxxvecc) (B) (vecbxxveca).(veccxxvecd) (C) (vecdxxvecc).(vecbxxveca0 (D) none of these

Prove that vecaxx(vecbxxvecc)+vecbxx(veccxxveca)+veccxx(vecaxxvecb)=vec0