Home
Class 12
MATHS
STATEMENT-1: If veca,vecb,vecc, are unit...

STATEMENT-1: If `veca,vecb,vecc`, are unit vectors such that `veca+vecb+vecc=0` and `veca.vecb+vecb.vecc+vecc.veca=-(3)/(2)`.
STATEMENT-2 : `(vecx+vecy)^(2)=|vecx|^(2)+|vecy|^(2)+2(vecx.vecy)`.

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-5

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-5

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise SECTION-F (Matrix-Match Type Questions)|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise SECTION-G (Integer Answer Type Questions)|2 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION-D) Comprehesion-II|3 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

If veca,vecb,vecc are unit vectors such that veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca= (A) 3/2 (B) -3/2 (C) 2/3 (D) 1/2

If veca, vecb, vecc are vectors such that veca.vecb=0 and veca + vecb = vecc then:

If veca,vecbandvecc are unit vectors such that veca+vecb+vecc=0 , then the value of veca.vecb+vecb.vecc+vecc.veca is

If veca, vecb, vecc are three non-zero vectors such that veca + vecb + vecc=0 and m = veca.vecb + vecb.vecc + vecc.veca , then:

If veca,vecb,vecc are three unit vectors such that veca+vecb+vecc=0, then veca.vecb+vecb.vecc+vecc.veca is equal to (A) -1 (B) 3 (C) 0 (D) -3/2

If veca, vecb are the unit vectors such that veca + 2vecb + 2vecc=0 , then |veca xx vecc| is equal to:

Assertion: If veca,vecb,vecc are unit such that veca+vecb+vecc=0 then veca.vecb+vecb.vecc+vecc.veca=-3/2 , Reason (vecx+vecy)^2=|vecx|^2+|vecy|^2+2(vecx.vecy) (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If veca, vecb, vecc are vectors such that |vecb|=|vecc| then {(veca+vecb)xx(veca+vecc)}xx(vecbxxvecc).(vecb+vecc)=

If |veca|=1,|vecb|=2,|vecc|=3and veca+vecb+vecc=0 the show that veca.vecb+vecb.vecc+vecc.veca=- 7