Home
Class 12
MATHS
STATEMENT-1 : If vecaxxvecb=veccxxvecd a...

STATEMENT-1 : If `vecaxxvecb=veccxxvecd` and `vecaxxvecc=vecbxxvecd`, then `veca-vecd` is perpendicular to `vecb-vecc`.
And
STATEMENT-2 : If `vecP` and `vecQ` are perpendicular then `vecP.vecQ=0`.

A

Statement-1 is True, Statement-2 is True, Statement-2 is a correct explanation for Statement-6

B

Statement-1 is True, Statement-2 is True, Statement-2 is not a correct explanation for Statement-6

C

Statement-1 is True, Statement-2 is False

D

Statement-1 is False, Statement-2 is True

Text Solution

Verified by Experts

The correct Answer is:
4
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise SECTION-F (Matrix-Match Type Questions)|1 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise SECTION-G (Integer Answer Type Questions)|2 Videos
  • VECTOR ALGEBRA

    AAKASH INSTITUTE|Exercise ASSIGNMENT (SECTION-D) Comprehesion-II|3 Videos
  • TRIGNOMETRIC FUNCTIONS

    AAKASH INSTITUTE|Exercise Section - J (Akash Challengers Question)|15 Videos

Similar Questions

Explore conceptually related problems

If vecaxxvecb = veccxxvecd and vecaxxvecc = vecbxxvecd , show that (veca-vecd) is parallel to (vecb-vecc) .

Assertion: If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd the (veca-vecd) is perpendicular to (vecb-vecc) ., Reason : If vecp is perpendicular to vecq then vecp.vecq=0 (A) Both A and R are true and R is the correct explanation of A (B) Both A and R are true R is not te correct explanation of A (C) A is true but R is false. (D) A is false but R is true.

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd show that (veca-vecd) is parallel to (vecb-vecc) . It is given that veca!=vecd and vecb!=vecc .

Two vectors vecP and vecQ that are perpendicular to each other are :

If veca.vecb=veca.vecc, vecaxxvecb=vecaxxvecc and veca!=vec0, then prove that vecb=vecc.

If vecaxxvecb=veccxxvecd and vecaxxvecc=vecbxxvecd then (A) (veca-vecd)=lamda(vecb-vecc) (B) veca+vecd=lamda(vecb+vecc) (C) (veca-vecb)=lamda(vecc+vecd) (D) none of these

The resultant of vecP and vecQ is perpendicular to vecP . What is the angle between vecP and vecQ

Prove that vecaxx{vecbxx(veccxxvecd)}=(vecb.vecd)(vecaxxvecc)-(vecb.vecc)(vecaxxvecd)

Prove that: (vecaxxvecb)xx(veccxxvecd)+(vecaxxvecc)xx(vecd xx vecb)+(vecaxxvecd)xx(vecbxxvecc)=2[vecb vecc vecd] veca

If veca, vecb, vecc, vecd are coplanar vectors, then (vecaxxvecb)xx(veccxxvecd)=