Home
Class 11
MATHS
If tanA=a/(a+1) and tanB=1/(2a+1) then t...

If `tanA=a/(a+1)` and `tanB=1/(2a+1)` then the value of `A+B` is `0` b. `pi/2` c. `pi/3` d. `pi/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tanA=a/(a+1) and tanB=1/(2a+1) then the value of A+B is: (a). 0 (b). pi/2 (c). pi/3 (d). pi/4

If A=(a)/(a+1) andtan B=(1)/(2a+1) then the value of A+B is 0 b.(pi)/(2) c.(pi)/(3) d.(pi)/(4)

If tanA=m/(m-1)\ a n d tanB=1/(2m-1), then prove that A-B=\ pi/4

If tan A=(a)/(a+1) and tan B=(1)/(2a+1) then find the value of A+B=................. A) 0 B) pi/2 C) pi/3 D) pi/4

If tanA=5/6 and tanB=1/(11) , Prove that A+B=pi/.4

If tantheta=1/2a n dt a nvarphi=1/3, then the value of theta+varphi is pi/6 (b) pi (c) 0 (d) pi/4

If z=(-2)/(1+isqrt(3)) , then the value of "arg"(z) is a. pi b. pi/4 c. pi/3 d. (2pi)/3

If z=(-2)/(1+isqrt(3)) , then the value of "arg"(z) is a. pi b. pi/4 c. pi/3 d. (2pi)/3

If tan theta=(1)/(2) andtan varphi =(1)/(3), then the value of theta+varphi is (pi)/(6) (b) pi(c)0(d)(pi)/(4)