Home
Class 12
MATHS
If sum(r=0)^(2n) ar(x-100)^r= sum(r=0)^(...

If `sum_(r=0)^(2n) a_r(x-100)^r= sum_(r=0)^(2n) br(x-101)^r` and `a_k=(2^k)/(.^kC_n) AA k ge n ` then b_n equals (A) `2^n(2^(n+1)-1)` (B) `2^n(2^(n)-1)` (C) `2^n(2^(n)+1)` (D) `2^(n+1)(2^(n)-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^r and a_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^ra n da_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^ra n da_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^ra n da_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If sum_(r = 0)^(2n) a_(r ) (x-2)^(r ) = sum_(r = 0)^(2n) b_(r ) (x-3)^(r ) and a_(k ) =1 for all k ge n then show that b_(n ) =""^((2n+1)) C_((n+1)) .

sum_(r=0)^(2n)a_(r)(x-2)^(r)=sum_(r=0)^(2n)b_(r)(x-3)^(r) and a_(k)=1 for all k>=n, then show that b_(n)=2n+1C_(n+1)