Home
Class 12
MATHS
If f(x)=|(log)e x| , then (a) f'(1^+)=...

If `f(x)=|(log)_e x|` , then (a) `f'(1^+)=1` (b) `f^'(1^(-))=-1` (c) `f'(1)=1` (d) `f'(1)=-1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=|(log)_(2)x|, then f(1^(+))=1 (b) f(1^(-))=-1f(1)=1( c) f'(1)=-1

If f(x) = log_e ((1-x)/(1+x)) , then f' (0) is

If f(x)=(log)_(x^(2))(log x), then f'(x) at x=e is (a) 0(b)1(c)1/e (d) 1/2e

If f(x)={[-3x+2,x =1]} ,then which of the following is not true (A) f'(1^(+))=1 (B) f'(1^(-))=-3 (C) f'(1^(-))=f'(1^(+))=1 (D) f is not differentiable at x=1

If f(x)=log((1-x)/(1+x)),-1ltxlt1 , then f(-x)=f(x) .

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log(x/(x-1)) , show that f(x+1)+f(x)=log ((x+1)/(x-1))

If f(x) = cos(log x) , then f((1)/(x)) f((1)/(y) - (1)/(2)[f((x)/(y)) + f(xy)] =

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))