Home
Class 10
MATHS
[{(1/(x^(a^(2)-b^2)))^(1/(a-b))} ^(a+b)]...

`[{(1/(x^(a^(2)-b^2)))^(1/(a-b))} ^(a+b)]^(1/((a+b)^2))=_________`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (x+1)/(x-1)=(a)/(b) and (1-y)/(1+y)=(b)/(a), then the value of (x-y)/(1+xy) is (2ab)/(a^(2)-b^(2)) (b) (a^(2)-b^(2))/(2ab) (c) (a^(2)+b^(2))/(2ab) (d) (a^(2)-b^(2)backslash)/(ab)

Show : ( x^(a^2)/ x^( b^2 ) )^ (1/( a+b)) times ( x^(b^2)/ x^( c^2 )) ^ ( 1/( b+c )) times ( x^(c^2)/ x^( a^2 ) )^ (1/( c+a)) = 1

If af(x+1)+bf(1/(x+1))=x ,x!=-1,a!=b ,t h e nf(2) is equal to (a) (2a+b)/(2(a^2-b^2)) (b) a/(a^2-b^2) (c) (a+2b)/(a^2-b^2) (d) none of these

Prove that (i) (a^(-1))/(a^(-1) + b^(-1)) + (a^(-1))/(a^(-1)-b^(-1)) = (2b^(2))/(b^(2) -a^(2)) (ii) (1)/(1+x^(a-b)) + (1)/(1+x^(b-a)) = 1

The asymptotes of the hyperbola (x^(2))/(a_(1)^(2))-(y^(2))/(b_(1)^(2))=1 and (x^(2))/(a_(2)^(2))-(y^(2))/(b_(2)^(2))=1 are perpendicular to each other. Then, (a) a_(1)/a_(2)=b_(1)/b_(2) (b) a_(1)a_(2)=b_(1)b_(2) (c) a_(1)a_(2)+b_(1)b_(2)=0 (d) a_(1)-a_(2)=b_(1)-b_(2)

The asymptotes of the hyperbola (x^(2))/(a_(1)^(2))-(y^(2))/(b_(1)^(2))=1 and (x^(2))/(a_(2)^(2))-(y^(2))/(b_(2)^(2))=1 are perpendicular to each other. Then, (a) a_(1)/a_(2)=b_(1)/b_(2) (b) a_(1)a_(2)=b_(1)b_(2) (c) a_(1)a_(2)+b_(1)b_(2)=0 (d) a_(1)-a_(2)=b_(1)-b_(2)

(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

Prove that :(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

(a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^(2))/(b^(2)-a^(2))

Prove that : (a^(-1))/(a^(-1)+b^(-1))+(a^(-1))/(a^(-1)-b^(-1))=(2b^2)/(b^2-a^2)