Home
Class 11
MATHS
Let d1a n dd2 be the length of the perp...

Let `d_1a n dd_2` be the length of the perpendiculars drawn from the foci `Sa n dS '` of the ellipse `(x^2)/(a^2)+(y^2)/(b^2)=1` to the tangent at any point `P` on the ellipse. Then, `S P : S^(prime)P=` `d_1: d_2` (b) `d_2: d_1` `d1 2:d2 2` (d) `sqrt(d_1):sqrt(d_2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let d_1a n dd_2 be the length of the perpendiculars drawn from the foci Sa n dS ' of the ellipse (x^2)/(a^2)+(y^2)/(b^2)=1 to the tangent at any point P on the ellipse. Then, S P : S^(prime)P= (a) d_1: d_2 (b) d_2: d_1 (c) d_1 ^2:d_2 ^2 (d) sqrt(d_1):sqrt(d_2)

Let d_(1) and d_(2) be the lengths of perpendiculars drawn from foci S' and S of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 to the tangent at any point P to the ellipse. Then S'P : SP is equal to

If 'd' be the length of perpendicular drawn from origin to any normal of the ellipse (x^(2))/(25)+(y^(2))/(16)=1 then 'd' cannot exceed

Let d be the perpendicular distance from the centre of the ellipse x^2/a^2+y^2/b^2=1 to the tangent drawn at a point P on the ellipse. If F_1 & F_2 are the two foci of the ellipse, then show the (PF_1-PF_2)^2=4a^2(1-b^2/d^2) .

Let d be the perpendicular distance from the centre of the ellipse x^2/a^2+y^2/b^2=1 to the tangent drawn at a point P on the ellipse. If F_1 & F_2 are the two foci of the ellipse, then show the (PF_1-PF_2)^2=4a^2[1-b^2/d^2] .

Let d be the perpendicular distance from the centre of the ellipse x^2/a^2+y^2/b^2=1 to the tangent drawn at a point P on the ellipse. If F_1 & F_2 are the two foci of the ellipse, then show the (PF_1-PF_2)^2=4a^2[1-b^2/d^2] .

Let d be the perpendicular distance from the centre of the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 to the tangent drawn at a point P on the ellipse.If F_(1)&F_(2) are the two foci of the ellipse,then show the (PF_(1)-PF_(2))^(2)=4a^(2)[1-(b^(2))/(d^(2))]

Let d and d^(') be the perpendicular distances from the foci of an ellipse to the tangent at P on the ellipse whose foci are S and S^(') . Then S^(')P:SP=

Let d be the perpendicular distance from the centre of the ellipse x^(2)/a^(2)+y^(2)/b^(2) = 1 to the tangent drawn at a point P on ellipse. If F_(1) and F_(2) are the foci of the ellipse, then show that (PF_(1)-PF_(2))^(2)=4a^(2)(1-(b^(2))/(d^(2)))