Home
Class 11
MATHS
(2-omega)(2-omega^2)(2-omega^10)(2-omega...

`(2-omega)(2-omega^2)(2-omega^10)(2-omega^11)=49`

Promotional Banner

Similar Questions

Explore conceptually related problems

if 1,omega, omega^2 are the cube roots of unity then the value of (2-omega)(2-omega^2)(2-omega^(10))(2-omega^(11))=

(2-omega)(2-omega^(2))(2-omega^(10))(2-omega^(11))="…….." , where omega is the complex cube root of unity

If omega is a complex cube root of unity, then (2-omega)(2-(omega)^2)(2-(omega)^10)(2-(omega)^11) is

1,omega,omega^(2) are the cube roots of unity then (2-omega)(2-omega^(2))(2-omega^(13))(2-omega^(17))

The value of (2 - omega) (2- omega ^(2)) (2-omega^(10)) (2- omega ^(11)) where omega is the complex cube root of unity, is : a)49 b)50 c)48 d)47

If omega is a complex cube root of unity, then the value of (2-omega) (2-omega ^(2)) (2- omega ^(10)) (2- omega ^(11)) will be-

(2-omega+omega^(2))^(2)

If omega is an imaginary cube root of unity then the value of (2-omega),(2-omega^(2))+2(2-omega)(3-omega^(2))+....+(n-1)(n-omega)(n-omega^(2)) is

Evaluate : (2-omega^(100))(2-omega^(101))(2-omega^(10))(2-omega^(11))