Home
Class 12
PHYSICS
A charged particle of specific charge (c...

A charged particle of specific charge (charge/mass) `alpha` released from origin at time `t=0` with velocity `vec v = v_0 (hat i + hat j)` in uniform magnetic field `vec B = B_0 hat i.` Coordinates of the particle at time `t= pi//(B_0 alpha)` are

Promotional Banner

Similar Questions

Explore conceptually related problems

A charge praticule of sepeific charge (charge/ mass ) alpha is realsed from origin at time t=0 with velocity v= v_(0)(hati+hatj) in unifrom magnetic fields B= B_(0)hati . Co-ordinaties of the particle at time t = (pi)/(B_(0)alpha) are

A charge praticule of sepeific charge (charge/ mass ) alpha is realsed from origin at time t=0 with velocity v= v_(0)(hati+hatj) in unifrom magnetic fields B= B_(0)hati . Co-ordinaties of the particle at time t = (pi)/(B_(0)alpha) are

A charged particle of specific charge (Charge/mass) alpha is released from origin at time t=0 with a velocity given as vecv=v_(0)(hati+hatj) The magnetic field in region is uniform with magnetic induction vecB=B_(0)hati . Coordinates of the particle at time t=(pi)/(B_(0)alpha) are:

An alpha particle moving with the velocity vec v = u hat i + hat j ,in a uniform magnetic field vec B = B hat k . Magnetic force on alpha particle is

An alpha particle moving with the velocity vec v = u hat i + hat j ,in a uniform magnetic field vec B = B hat k . Magnetic force on alpha particle is

A particle of specific charge 'alpha' is projected from origin at t=0 with a velocity vec(V)=V_(0) (hat(i)-hat(k)) in a magnetic field vec(B)= -B_(0)hat(k) . Then : (Mass of particle =1 unit)

In uniform magnetic field, if angle between vec(v) and vec(B) is 0^(@) lt 0 lt 90^(@) , the path of particle is helix. Let v_(1) be the component of vec(v) along vec(B) and v_(2) be the component perpendicular to vec(B) . Suppose p is the pitch. T is the time period and r is the radius of helix. Then T = (2pim)/(qB), r = (mv_(2))/(qB), P = (v_(1))T Assume a charged particle of charge q and mass m is released from the origin with velocity vec(v) = v_(0) hat(i) - v_(0) hat(k) in a uniform magnetic field vec(B) = -B_(0) hat(k) . Pitch of helical path described by particle is

In uniform magnetic field, if angle between vec(v) and vec(B) is 0^(@) lt 0 lt 90^(@) , the path of particle is helix. Let v_(1) be the component of vec(v) along vec(B) and v_(2) be the component perpendicular to vec(B) . Suppose p is the pitch. T is the time period and r is the radius of helix. Then T = (2pim)/(qB), r = (mv_(2))/(qB), P = (v_(1))T Assume a charged particle of charge q and mass m is released from the origin with velocity vec(v) = v_(0) hat(i) - v_(0) hat(k) in a uniform magnetic field vec(B) = -B_(0) hat(k) . Pitch of helical path described by particle is

A particle of specific charge alpha is projected from origin with velocity v=v_0hati-v_0hatk in a uniform magnetic field B=-B_0hatk . Find time dependence of velocity and position of the particle.

A particle of specific charge alpha is projected from origin with velocity v=v_0hati-v_0hatk in a uniform magnetic field B=-B_0hatk . Find time dependence of velocity and position of the particle.