Home
Class 11
MATHS
Prove that: \ sin x+sin3x++sin(2n-1)x=(s...

Prove that: `\ sin x+sin3x++sin(2n-1)x=(sin^2\ \ n x)/(sin x)` for all `n in NN`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin x+sin3x+...+sin(2n-1)x=(sin^(2)nx)/(sin x)

Prove that: s in x+s in3x++sin(2n-1)x=(sin^(2)nx)/(s in x) for all n in N.

sin x+sin3x+.......sin(2n-1)x=(sin^(2)nx)/(sin x)

Prove that cos x+cos3x+cos5x+cos(2n-1)x=(sin2nx)/(2)sin x

Prove that: ,,(sin x-sin3x)/(sin^(2)x-cos^(2)x)=2sin x

For all ninNN , prove by principle of mathematical induction that, sinx+sin3x+ . . .+sin(2n-1)x=(sin^(2)nx)/(sinx)

Prove that sin x + sin 2x + sin 3x = sin 2x (1 + 2 cos x )

Prove that (sin x-sin 3 x)/(sin ^(2) x-cos ^(2) x)=2 sin x

Prove that: sin(n+1)x sin(n+2)x+cos(n+1)x cos(n+2)x=c

Prove that nC_ (1) sin x * cos (n-1) x + nC_ (2) sin2x * cos (n-2) x + nC_ (3) sin3x * cos (n-3) x + ... + nC_ ( n) sin nx = 2 ^ (n-1) sin nn