Home
Class 11
MATHS
" (iv) "(a^(2)-b^(2)),(a-b),((a-b)/(a+b)...

" (iv) "(a^(2)-b^(2)),(a-b),((a-b)/(a+b)),..." to "n" terms "

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the following geometric progression: (a^(2)-b^(2)),(a-b),((a-b)/(a+b)),rarr n terms.

Find the sum of the following geometric progression: (a^2-b^2),\ (a-b),\ ((a-b)/(a+b)),\ to\ n terms.

Find the sum (i) 1+(-2)+(-5)+(-8)+ … +(-236) (ii) (4-(1)/(n))+(4-(2)/(n))+(4-(3)/(n))+ … upto n terms. (iii) (a-b)/(a+b)+(3a-2b)/(a+b)+(5a-3b)/(a+b)+ … to 11 terms.

Find the sum (i) 1+(-2)+(-5)+(-8)+ … +(-236) (ii) (4-(1)/(n))+(4-(2)/(n))+(4-(3)/(n))+ … upto n terms. (iii) (a-b)/(a+b)+(3a-2b)/(a+b)+(5a-3b)/(a+b)+ … to 11 terms.

Find the sum [(a-b)/(a+b)+(3a-2b)/(a+b)+(5a-3b)/(a+b)+…+"to 12 terms"]

If the coefficients of three successive terms in the expansion of (1+x)^(n) be a ,b and c respectively , then show that , n=(2ac+b(a+c))/(b^(2)-ac)and(a(b+c))/(b^(2)-ac)= no. of the terms has coefficients a .