Home
Class 11
MATHS
The two circles which pass through (0,a)...

The two circles which pass through `(0,a)a n d(0,-a)` and touch the line `y=m x+c` will intersect each other at right angle if `a^2=c^2(2m+1)` `a^2=c^2(2+m^2)` `c^2=a^2(2+m^2)` (d) `c^2=a^2(2m+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The two circles which pass through (0,a)a n d(0,-a) and touch the line y=m x+c will intersect each other at right angle if (A) a^2=c^2(2m+1) (B) a^2=c^2(2+m^2) (C) c^2=a^2(2+m^2) (D) c^2=a^2(2m+1)

The two circles which pass through (0,a)a n d(0,-a) and touch the line y=m x+c will intersect each other at right angle if (A) a^2=c^2(2m+1) (B) a^2=c^2(2+m^2) (C) c^2=a^2(2+m^2) (D) c^2=a^2(2m+1)

The two circles which pass through (0,a) and (0,-a) and touch the line y=mx+c will intersect each other at right angle if a^(2)=c^(2)(2m+1)a^(2)=c^(2)(2+m^(2))c^(2)=a^(2)(2+m^(2))(d)c^(2)=a^(2)(2m+1)

Prove that the two circles which pass through the points (0,a),(0,-a) and touch the line y=mx+c will cut orthogonally if c^2=a^2(2+m^2)

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1

If the equations y=m x+c and xcosalpha+ysinalpha=p represent the same straight line, then (a) p=csqrt(1+m^2) (b) c=psqrt(1+m^2) (c) c p=sqrt(1+m^2) (d) p^2+c^2+m^2=1

The difference between the circumference and radius of a circle is 37 cm. The area of the circle is (a)111 c m^2 (b) 148 \ c m^2 (c)154 \ c m^2 (d) 285 \ c m^2

The area of a circle is 220\ c m^2 . The area of a square inscribed in it is (a) 49\ c m^2 (b) 70\ c m^2 (c) 140\ c m^2 (d) 150\ c m^2