Home
Class 12
MATHS
tan^(-1)(1)+cos^(-1)((1)/(sqrt(2)))=sin^...

tan^(-1)(1)+cos^(-1)((1)/(sqrt(2)))=sin^(-1)x

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve the following equations : tan^(-1)(1)+cos^(-1)(1/sqrt2)=sin^(-1)x

If tan^(-1)x+cos^(-1)((y)/(sqrt(1+y^(2))))=sin^(-1)((3)/(sqrt(10))) , then

Cos^(-1)((-1)/2)-2Sin^(-1)(1/2)+3Cos^(-1)((-1)/sqrt(2))-4Tan^(-1)(-1)=

Evaluate the value of tan^(-1) (-sqrt(3)) +cos^(-1) (1/(sqrt(2))) + sin^(-1) (-(sqrt(3))/2)

tan^(-1)(2)=sin^(-1)(2/(sqrt(5)))=cos^(-1)(1/(sqrt(5)))

cos^(-1)((-1)/(2))-2sin^(-1)((1)/(2))+3cos^(-1)((-1)/(sqrt(2)))-4tan^(-1)(-1) equals to

Solve for x : i) cos(sin^(-1)x)=1/2 ii) tan^(-1)x=sin^(-1)1/sqrt(2) iii) sin^(-1)x-cos^(-1)x=pi/6

Cos^(-1)((-1)/2)-2Sin^(-1)(1/2)+3Cos^(-1)((-1)/sqrt2)-4Tan^(-1)(-1)=