Home
Class 11
MATHS
" i) "((1+i)/(1-i))^(4n+1)...

" i) "((1+i)/(1-i))^(4n+1)

Promotional Banner

Similar Questions

Explore conceptually related problems

Simiplify : ((1+i)/(1-i))^(4n+1) (n is a positive integer)

The value of ((1+i)/(1-i))^(4 n)=

The smallest integer n such that ((1 + i)/(1-i))^(n) = 1 is

((1+i)/(1-i))^(4n+1) where n is a positive integer.

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

If ((1 +i)/(1 -i))^(x) =1 , then (A) x=2n+1 (B) x=4n (C) x=2n (D) x=4n+1, n in N.

Find the least positive integral value of n so that ((1+i)/(1-i))^(n)=1 [Hint : Note that ((1+i)/(1-i))and i^(4)=1]

Show that the least positive integral value of n for which ((1+i)/(1 -i))^(n) = 1 is 4.

((1+i)/(1-i))^(4)+((1-i)/(1+i))^(4)=