Home
Class 11
MATHS
If Pn = cos^n theta+ sin^n theta then ...

If ` P_n = cos^n theta+ sin^n theta` then `2P_6-3P_4 + 1` =

Promotional Banner

Similar Questions

Explore conceptually related problems

If u_(n) = cos^(n) theta + sin^(n) theta then 2u_(6)-3u_(4)=

If P_(n) = cos ^(n)theta + sin^(n)theta then 2. P_(6) - 3. P_(4) + 1 =

If P_n=cos^ntheta+sin^ntheta, show that : 2P_6-3P_4+1=0 .

If p_n =cos^n theta+sin ^ntheta then the value of 2P_6-3P_4+1 will be

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If P_(n) = cos^(n)theta +sin^(n)theta , then P_(2) - P_(1) is equal to :

If P_(n) = cos^(n) theta + sin^(n) theta 6P_(10) -15P_(8) + 10P_(6) is equal to

If P_(n) = cos^(n) theta + sin^(n) theta 6P_(10) -15P_(8) + 10P_(6) is equal to

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=

If T_(n)=cos^(n)theta+sin ^(n)theta, then 2T_(6)-3T_(4)+1=