Home
Class 12
MATHS
Let vec aa n d vec b be unit vectors th...

Let ` vec aa n d vec b` be unit vectors that are perpendicular to each other. Then `[ vec a+( vec axx vec b) vec b+( vec axx vec b) vec axx vec b]` will always be equal to `1` b. `0` c. `-1` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let vec aa n d vec b be unit vectors that are perpendicular to each other. Then [ vec a+( vec axx vec b) vec b+( vec axx vec b) vec axx vec b] will always be equal to a. 1 b. 0 c. -1 d. none of these

If vec aa n d vec b are two vectors, then prove that ( vec axx vec b)^2=| vec adot vec a vec adot vec b vec bdot vec a vec bdot vec b| .

If vec aa n d vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b]dot

If vec aa n d vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b]dot

If vec a and vec b are two vectors such that | vec axx vec b|=2, then find the value of [ vec a vec b vec axx vec b].

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

If vec a\ a n d\ vec b are unit vectors then write the value of | vec axx vec b|^2+( vec adot vec b)^2dot

The vector component of vec b perpendicular to vec a is ( vec bdot vec c) vec a b. ( vec axx( vec bxx vec a))/(| vec a|^2) c. vec axx( vec bxx vec a) d. none of these

If a ,\ b ,\ c are non coplanar vectors then ( vec adot( vec bxx vec c))/(( vec cxx vec a)dot vec b)+( vec bdot( vec axx vec c))/( vec cdot( vec axx vec b)) is equal to 2 b. "\ "0"\ " c. 1 d. none of these