Home
Class 11
MATHS
The shortest distance between line y-x=1...

The shortest distance between line `y-x=1` and curve `x=y^2` is (a) `(3sqrt2)/8` (b) `8/(3sqrt2)` (c) `4/sqrt3` (d) `sqrt3/4`

Promotional Banner

Similar Questions

Explore conceptually related problems

The shortest distance between line y"-"x""=""1 and curve x""=""y^2 is : (1) (sqrt(3))/4 (2) (3sqrt(2))/8 (3) 8/(3sqrt(2)) (4) 4/(sqrt(3))

The shortest distance between line y-x=1 and curve is : (1)(sqrt(3))/(4) (2) (3sqrt(2))/(8) (3) (8)/(3sqrt(2))(4)(4)/(sqrt(3))

The shortest distance between the line yx=1 and the curve x=y^(2) is (A)(3sqrt(2))/(8) (B) (2sqrt(3))/(8) (C) (3sqrt(2))/(5) (D) (sqrt(3))/(4)

The shortest distance between the line x=y and the curve y^(2)=x-2 is (a) 2 (b) (7)/(8) (c) (7)/(4sqrt(2)) (d) (11)/(4sqrt(2))

The shortest distance between the line x=y and the curve y^(2)=x-2 is (a) 2 (b) (7)/(8) (c) (7)/(4sqrt(2)) (d) (11)/(4sqrt(2))

The distance between the parallel lnes y=2x+4 and 6x-3y-5 is (A) 1 (B) 17/sqrt(3) (C) 7sqrt(5)/15 (D) 3sqrt(5)/15

The distance between the parallel lnes y=2x+4 and 6x-3y-5 is (A) 1 (B) 17/sqrt(3) (C) 7sqrt(5)/15 (D) 3sqrt(5)/15

The area bounded by the curves y = - x^(2) + 3 and y = 0 is a) sqrt(3)+1 b) sqrt(3) c) 4sqrt(3) d) 5sqrt(3)

The shortest distance between the lines (x-3)/(3)=(y-8)/(-1)=(z-3)/(1) and (x+3)/(-3)=(y+7)/(2)=(z-6)/(4) is a.sqrt(30)b.2sqrt(30)c.5sqrt(30)d.3sqrt(30)

the length of intercept made by the line sqrt2x-y-4sqrt2=0 on the parabola y^2=4x is equal to (a) 6sqrt3 (b) 4sqrt3 (c) 8sqrt2 (d) 6sqrt2