Home
Class 10
MATHS
(a)/((x-a))+(b)/((x-b))=(2c)/((x-c))...

(a)/((x-a))+(b)/((x-b))=(2c)/((x-c))

Promotional Banner

Similar Questions

Explore conceptually related problems

Find x in terms of a,b and c(a)/(x-a)+(b)/(x-b)+(c)/(x-c)=2(c)/(x-c)x!=a,x!=b,x!=c

Find x in terms of a , b and c : (a)/(x - a) + (b)/(x - b) = (2 c)/(x - c) , x - a , b , c

Show that the equation A^(2)/(x-a)+B^(2)/(x-b)+C^(2)/(x-c)+...+H^(2)/(x-h)=k has no imaginary root,where A,B,C,...., Handa,b,c,........., handk in R

(a^2/(x-a)+b^2/(x-b)+c^2/(x-c)+a+b+c)/(a/(x-a)+b/(x-b)+c/(x-c))

If |(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))| = (a - b) (b - c) (c - a) (a + b + c) , where a,b,c are all different, then the determinant |(1,1,1),((x-a)^(2),(x-b)^(2),(x-c)^(2)),((x-b)(x-c),(x-c)(x-a),(x-a)(x-b))| vanishes when a)a + b + c = 0 b) x = (1)/(3) (a + b + c) c) x = (1)/(2) (a + b + c) d) x = a + b + c

Let P(x)=((x-a)(x-b))/((c-a)(c-b))c^(2)+((x-b)(x-c))/((a-b)(a-c))a^(2)+((x-c)(x-a))/((b-c)(b-a))b^(2) Prove that P(x) has the property that P(y)=y^(2) for all y in R .

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

The equation (a(x-b)(x-c))/((a-b)(a-c)) + (b(x-c)(x-a))/((b-c)(b-a))+ (c (x-a) (x-b))/((c-a)(c-b))= x is satisfied by

Prove that. (i) sqrt(x^(-1) y) .sqrt(y^(-1) z) . Sqrt(z^(-1) x) = 1 (ii) ((1)/(x^(a-b)))^((1)/(a-c)).((1)/(x^(b-c))).((1)/(x^(c-b)))^((1)/(c-b))= 1 (iii) (x^(a(b-c)))/(x^(b(a-c))) div ((x^(b))/(x^(a))) (iv) ((x^(a+b))^(2)(x^(b+c))^(2)(x^(c+a))^(2))/((x^(a)x^(b)x^(c))^(4))