Home
Class 12
MATHS
The value of lim(x->0)((sinx)^(1/x)+(1/x...

The value of `lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx))` , where `x >0,` is 0 (b) `-1` (c) 1 (d) 2

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

The value of lim_(x->0)((sinx)^(1/x)+(1/x)^(sinx)) , where x >0, is (a)0 (b) -1 (c) 1 (d) 2

Find the value of lim_(x->0)(1/sinx-1/x)

Find the value of lim_(x->0)(1/sinx-1/x)

The value of lim_(x rarr0)((sin x)^((1)/(x))+((1)/(x))^(sin x)) where x>0, is 0(b)-1(c)1(d)2])

lim_(xto0)(e^(sinx)-1)/x=

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0)((sinx)/(x))^((1)/(x^2)) , is

The value of lim_(xrarr0) ((sinx)/(x))^((sinx)/(x-sinx)) , is