Home
Class 12
MATHS
The equations of tangents to the circle ...

The equations of tangents to the circle `x^2+y^2-6x-6y+9=0` drawn from the origin in `x=0` (b) `x=y` (c) `y=0` (d) `x+y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

The equations of tangents to the circle x^2+y^2-6x-6y+9=0 drawn from the origin in (a) x=0 (b) x=y (c) y=0 (d) x+y=0

The equations of tangents to the circle x^2+y^2-6x-6y+9=0 drawn from the origin in (a). x=0 (b) x=y (c) y=0 (d) x+y=0

The equations of tangents to the circle x^2+y^2-6x-6y+9=0 drawn from the origin in (a). x=0 (b) x=y (c) y=0 (d) x+y=0

If OA and OB be the tangents to the circle x^(2)+y^(2)-6x-8y+21=0 drawn from the origin O, then AB

If y+c=0 is a tangent to the circle x^2+y^2-6x-2y+1=0 at (a,4) then

If y+c=0 is a tangent to the circle x^(2)+y^(2)-6x-2y+1=0 at (a, 4), then

Find the equation of the tangents to the circle x^(2)+y^(2)-4x+6y-12=0 which are parallel to x+y-8=0

Equation of a common tangent to the circle x^(2)+y^(2)-6x=0 and the parabola y^(2)=4x is