Home
Class 12
MATHS
[" Using properties of determinants,prov...

[" Using properties of determinants,prove that: "],[[(y+z)^(2),xy,zx],[xy,(x+z)^(2),yz],[xz,yz,(x+y)^(2)]|=2xyz(x+y+z)^(3)]

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: |[(y+z)^2, xy, zx],[xy, (x+z)^2, yz], [xz, yz, (x+y)^2]|=2xyz(x+y+z)^3

Using properties of determinants, prove that : |{:((x+y)^(2),zx,xy),(zx,(z+y)^(2),xy),(zy,xy,(z+x)^(2)):}|=2xyz(x+y+z)^(3) .

Using properties of determinants, prove that : {:|((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3

Show that triangle = |[(y+z)^2,xy,zx],[xy,(x+z)^2,yz],[xz,yz,(x+y)^2]| = 2xyz(x+y+z)^3

Show that Delta=|((y+z)^2,xy,zx),(xy,(x+z)^2,yz),(xz,yz,(x+y)^2)|=2x y z(x+y+z)^3 .

Using Properties of determinants, prove that: {:|(x^2+1,xy,yz),(xy,y^2+1,yz),(xz,yz,z^2+1)|=1+x^2+y^2+z^2

Using properties of determinants , prove that |(x^2+1,xy,zx),(xy,y^2+1,yz),(zx,yz,z^2+1)|=1+x^2+y^2+z^2

Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^2,zx,z+x),(x^2y^2,xy,x+y):}|=0

Using properties of determinant show that : |((x+y)^2,zx,zy),(zx,(z+y)^2,xy),(zy,xy,(z+x)^2)|=2xyz(x+y+z)^3

By using properties of determinants, prove that |[x,x^2,yz],[y,y^2,zx],[z,z^2,xy]|=(x-y)(y-z)(z-x)(xy+yz+zx)