Home
Class 12
MATHS
int(a)^(b)f(x)dx=-int(b)^(a)f(x)dx." In ...

int_(a)^(b)f(x)dx=-int_(b)^(a)f(x)dx." In particular,"int_(a)^(a)f(x)dx=0

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^(a)f(x)dx=int_(a)^(0)f(a-x)dx .

int_(a)^(b)f(x)dx=F(b)-F(a) .

prove that : int_(0)^(2a) f(x)dx = int_(0)^(a) f(x)dx + int_(0)^(a)f(2a-x)dx

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx int_(0)^(a)f(x)dx=p" then " int_(0)^(a)f(x)g(x)dx is

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If int_(0)^(a//2)f(x)dx=p," then "int_(0)^(a)f(x)dx is equal to

int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx. Hence evaluate : int_(a)^(b)(f(x))/(f(x)+f(a+b-x))dx.

If int_(a)^(b)f(x)dx=int_(a)^(b)phi(x)dx , then-

Let f(x) and g(x) be any two continuous function in the interval [0, b] and 'a' be any point between 0 and b. Which satisfy the following conditions : f(x)=f(a-x), g(x)+g(a-x)=3, f(a+b-x)=f(x) . Also int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx, int_(a)^(b)f(x)dx=int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is