Home
Class 12
MATHS
" If "y=sin(log x)," then show that "x^(...

" If "y=sin(log x)," then show that "x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin(log x), then prove that (x^(2)d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin^(-1) x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=3cos(log x)+4sin(log x), then show that x^(2)*(d^(2)y)/(dx^(2))+(dy)/(dx)+y=0

If y=sin^(-1)x, then show that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y=sin(log x), prove that x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx)+y=0

If y= sin^(-1)x , show that (1-x^(2)) (d^(2)y)/(dx^(2))-x(dy)/(dx)0 .