Home
Class 12
MATHS
If the straight line ax + by = 2 ; a, b!...

If the straight line `ax + by = 2 ; a, b!=0`, touches the circle `x^2 +y^2-2x = 3` and is normal to the circle `x^2 + y^2-4y = 6`, then the values of 'a' and 'b' are ?

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the straight line 3x + 4y = 20 touches the circle x ^2 + y ^2 = 16.

If the straight line 3x + 4y = k touches the circle x^2+y^2-10x = 0, then the value of k is:

If the straight line 3x + 4y = k touches the circle x^(2) + y^(2) = 16 x , then the values of k are

If the line 3x-2y+p = 0 is normal to the circle x^(2)+ y^(2) = 2x-4y ,then p will be

The straight line xcostheta+ysintheta=2 will touch the circle x^2+y^2-2x=0 ,if

Show that the line 5x + 12y - 4 = 0 touches the circle x^(2)+ y^(2) -6x + 4y + 12 = 0

Show that the line 5x + 12y - 4 = 0 touches the circle x^(2)+ y^(2) -6x + 4y + 12 = 0

The straight line x cos theta+y sin theta=2 will touch the circle x^(2)+y^(2)-2x=0, if

If the line a x+b y=2 is a normal to the circle x^2+y^2-4x-4y=0 and a tangent to the circle x^2+y^2=1 , then