Home
Class 12
MATHS
lim(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2...

`lim_(n->oo)[1/sqrt(2n-1^2) +1/sqrt(4n-2^2)+1/sqrt(6n-3^2)+...+1/n]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: underset(nrarralpha)Lt[1/(sqrt(2n-1^2)) +1/(sqrt(4n-2^2))+1/sqrt(6n-3^2)+...+1/n]

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-3^(2)))+....+1/n)=

Find the value of lim_(nrarroo)[(1)/(sqrt(2n-1)^(2))+(1)/(sqrt(4n-2^(2)))+...+(1)/(n)] .

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

Evaluate: ("lim")_(n rarr oo)(1/(sqrt(4n^2-1))+1/(sqrt(4n^2-2^2))++1/(sqrt(3n^2)))

The value of lim_(nto oo)(1/(sqrt(n^(2)))+1/(sqrt(n^(2)+1))+…..+1/(sqrt(n^(2)+2n))) is

The value of lim_(n rarr oo)(1/sqrt(4n^(2)-1)+1/sqrt(4n^(2)-4)+...+1/sqrt(4n^(2)-n^(2))) is -

lim_(n rarr oo)(sqrt(n^(2)+n)-sqrt(n^2+1))

lim_(n rarr oo)(1+sqrt(n))/(1-sqrt(n))