Home
Class 12
MATHS
If tan((x^2-y^2)/(x^2+y^2))=a then prove...

If `tan((x^2-y^2)/(x^2+y^2))=a` then prove that `(dy)/(dx)=y/x`

Promotional Banner

Similar Questions

Explore conceptually related problems

If log(x^2-y^2)/(x^2+Y^2)=a the prove that (dy/dx)=y/x

If tan^(-1)((x^2-y^2)/(x^2+y^2))=a , prove that (dy)/(dx)=x/y((1-tana))/((1+tana)) .

If tan^-1((x^2 - y^2)/(x^2 + y^2)) = a , prove that dy/dx = x (1-tana)/(y (1+tana))

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

If cos^(-1)((x^2-y^2)/(x^2+y^2))=tan^(-1)a , prove that (dy)/(dx)=y/xdot

If tan ^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=a, prove that (dy)/(dx)=(x)/(y)((1-tan a))/((1+tan a))

if sin^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=c prove that (dy)/(dx)=(y)/(x)

If cos^(-1)((x^(2)-y^(2))/(x^(2)+y^(2)))=tan^(-1)a then prove that (dy)/(dx)=(y)/(x)

If log ((x^(2) -y^(2))/( x^(2)+ y^(2))) =a, Prove that (dy)/(dx) =(y)/(x).