Home
Class 12
MATHS
If a, b, c p, q, r six complex numbers s...

If `a`, `b`, `c` `p`, `q`, `r` six complex numbers such that `p/a+q/b+r/c=1+i` and `a/p+b/q+c/r=0` then value of `p^2/a^2+q^2/b^2+r^2/c^2=`

Text Solution

Verified by Experts

`p^2/a^2+q^2/b^2+r^2/c^2 = (p/a+q/b+r/c)^2-2((pq)/(ab)+(qr)/(bc)+(rp)/(ca))`
`=(1+i)^2-2((pqc)/(abc)+(qra)/(abc)+(rpb)/(cab))`
`=(1+i)^2-2/(abc)*(pqr)(c/r+a/p+b/q)`
As, `(a/p+b/q+c/r) = 0`, our equation becomes,
`p^2/a^2+q^2/b^2+r^2/c^2 = (1+i)^2`
`=1+i^2+2i = 1-1+2i = 2i`
`:. p^2/a^2+q^2/b^2+r^2/c^2 = 2i`
Promotional Banner

Similar Questions

Explore conceptually related problems

If p/a + q/b + r/c=1 and a/p + b/q + c/r=0 , then the value of p^(2)/a^(2) + q^(2)/b^(2) + r^(2)/c^(2) is:

Ifa,b,c,p,q,r be six complex numbers such that a/p+b/q+c/r=0 and p/a+q/b+r/c=1-i then prove that (p^2/a^2)+(q^2/b^2)+(r^2/c^2)=-2i

If a,b,c,p,q,r are six complex numbers, such that frac{p}{a}+frac{q}{b}+frac{r}{c}=1+i and frac{a}{p}+frac{b}{q}+frac{c}{r} = 0 , where i=sqrt(-1) , then the value of frac{p^2}{a^2}+frac{q^2}{b^2}+frac{r^2}{c^2} is

a!=p , b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 the value of p/(p-a)+q/(q-b)+r/(r-c)=

If a!=p ,b!=q ,c!=ra n d|p b c a q c a b r|=0, then find the value of p/(p-a)+q/(q-b)+r/(r-c)dot

If a!=p,b!=q,c!=r and |(p,b,c),(a,q,c),(a,b,r)|=0 then the value of P/(p-a)+q/(q-b)+r/(r-c)