Home
Class 12
MATHS
Let ak = .^nCk for 0 lt= k lt= n and Ak ...

Let `a_k = .^nC_k` for `0 lt= k lt= n` and `A_k = [(a_(k-1),0), (0,a_k)]` for `1 lt= k lt= n` and `B=sum_(k=1)^(n-1)A_k * A_(k+1) = [(a,0), (0,b)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let C_k = .^nC_k, for 0 lt= k lt=n and A_k = ((C_(k-1)^2,0), (0,C_k^2)) for k gt= 1 and A_1+A_2+...+A_n = ((k_1,0), (0,k_2)), then

Let, C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]] for k ge l and A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]] , then

Let, C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]] for k ge l and A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]] , then

Let, C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]] for k ge l and A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]] , then

Let, C_(k) = ""^(n)C_(k) " for" 0 le kle n and A_(k) = [[C_(k-1)^(2),0],[0,C_(k)^(2)]] for k ge l and A_(1) + A_(2) + A_(3) +...+ A_(n) = [[k_(1),0],[0, k_(2)]] , then

If a_(k) = (1)/( k(k+1) ) for k= 1,2,3,….n then (sum_(k=1)^(n) a_(k) )=

If |a| lt 1, b = sum_(k=1)^(oo) (a^(k))/(k) rArr a=

If |a| lt 1, b = sum_(k=1)^(oo) (a^(k))/(k) rArr a=

If a_(k)=(1)/(k(k+1)) for k=1,2,3, .. , n, then (sum_(k=1)^(n) a_(k))^(2)=